Skip to main content

ROC Curves for the Statistical Analysis of Microarray Data

  • Protocol
  • First Online:
Microarray Bioinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1986))

Abstract

A receiver operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability of a binary classifier as a function of its discrimination threshold. This chapter is an overview on the use of ROC curves for microarray data. The notion of ROC curve and its motivation is introduced in Subheading 1. Relevant scientific contributions concerning the use of ROC curves for microarray data are briefly reviewed in Subheading 2. The special case with covariates is considered in Subheading 3. Two relevant aspects are reviewed in this section: the use of LASSO techniques for selecting and combining relevant markers and how to correct for multiple testing when a large number of markers are available. Finally, some conclusions are included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  2. Swets JA, Pickett RM (1982) Evaluation of diagnostic systems: methods from signal detection theory. Academic Press, New York

    Google Scholar 

  3. Hanley JA (1989) Receiver operating characteristic (ROC) methodology: the state of the art. Crit Rev Diagn Imaging 29(2):307–335

    CAS  PubMed  Google Scholar 

  4. Pepe MS (1997) A regression modelling framework for receiver operating characteristic curves in medical diagnostic testing. Biometrika 84:595–608

    Article  Google Scholar 

  5. Metz CE, Herman BA, Shen JH (1998) Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Stat Med 17:1033–1053

    Article  CAS  PubMed  Google Scholar 

  6. Alonzo TA, Pepe MS (2002) Distribution-free ROC analysis using binary regression techniques. Biostatistics 3:421–432

    Article  PubMed  Google Scholar 

  7. Pepe MS, Longton G (2005) Standardizing markers to evaluate and compare their performances. Epidemiology 16:598–603

    Article  PubMed  Google Scholar 

  8. Gu W, Pepe MS (2009) Estimating the capacity for improvement in risk prediction with a marker. Biostatistics 10:172–186

    Article  PubMed  Google Scholar 

  9. Huang Y, Pepe MS (2009) Biomarker evaluation and comparison using the controls as a reference population. Biostatistics 10:228–244

    Article  PubMed  Google Scholar 

  10. Pepe MS, Longton G, Janes H (2009) Estimation and comparison of receiver operating characteristic curves. Stata J 9:1–16

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mari JD, Williams P (1985) A comparison of the validity of 2 psychiatric screening questionnaires (GHQ-12 and SRQ-20) in Brazil, using relative operating characteristic (ROC) analysis. Psychol Med 15(3):651–659

    Article  CAS  PubMed  Google Scholar 

  12. Greiner M, Sohr D, Gobel P (1995) A modified ROC analysis for the selection of cutoff values and the definition of intermediate results of serodiagnostic tests. J Immunol Methods 185(1):123–132

    Article  CAS  PubMed  Google Scholar 

  13. Rankinen T, Kim SY, Perusse L, Despres JP, Bouchard C (1999) The prediction of abdominal visceral fat level from body composition and anthropometry: ROC analysis. Int J Obes 23(8):801–809

    Article  CAS  Google Scholar 

  14. Chan HP, Sahiner B, Helvie MA, Petrick N, Roubidoux MA, Wilson TE, Adler DD, Paramagul C, Newman JS, Sanjay-Gopal S (1999) Improvement of radiologists’ characterization of mammographic masses by using computer-aided diagnosis: an ROC study. Radiology 212(3):817–827

    Article  CAS  PubMed  Google Scholar 

  15. Baker SG (2003) The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer. J Natl Cancer Inst 95:511–515

    Article  PubMed  Google Scholar 

  16. Pepe MS, Longton G, Anderson GL, Schummer M (2003) Selecting differentially expressed genes from microarray experiments. Biometrics 59:133–142

    Article  PubMed  Google Scholar 

  17. Tsai CA, Chen JJ (2004) Significance analysis of ROC indices for comparing diagnostic markers: applications to gene microarray data. J Biopharm Stat 14(4):985–1003

    Article  PubMed  Google Scholar 

  18. Berrar D, Flach P (2012) Caveats and pitfalls of ROC analysis in clinical microarray research (and how to avoid them). Brief Bioinform 13(1):83–97

    Article  PubMed  Google Scholar 

  19. Swamidass SJ, Azencott CA, Daily K, Baldi P (2010) A CROC stronger than ROC: measuring, visualizing and optimizing early retrieval. Bioinformatics 26(10):1348–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pepe MS, Thompson ML (2000) Combining diagnostic test results to increase accuracy. Biostatistics 1(2):123–140

    Article  CAS  PubMed  Google Scholar 

  21. Pepe MS, Cai T, Longton G (2006) Combining predictors for classification using the area under the receiver operating characteristic curve. Biometrics 62(1):221–229

    Article  PubMed  Google Scholar 

  22. Liu C, Liu A, Halabi S (2011) A min-max combination of biomarkers to improve diagnostic accuracy. Stat Med 30(16):2005–2014

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kang L, Liu A, Tian L (2016) Linear combination methods to improve diagnostic/prognostic accuracy on future observations. Stat Methods Med Res 25(4):1359–1380

    Article  PubMed  Google Scholar 

  24. Tibshirani R (1996) Regression shrinkage and selection via the LASSO. J R Stat Soc Ser B 58(1):267–288

    Google Scholar 

  25. Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89(428):1255–1270

    Article  Google Scholar 

  26. Hastie T, Buja A, Tibshirani R (1995) Penalized discriminant analysis. Ann Stat 23(1):73–102

    Article  Google Scholar 

  27. Ghosh D, Chinnaiyan AM (2005) Classification and selection of biomarkers in genomic data using LASSO. J Biomed Biotechnol 2:147–154

    Article  Google Scholar 

  28. Hochberg Y, Tamhane AC (1987) Multiple comparison procedures. Wiley, New York

    Book  Google Scholar 

  29. Westfall PH, Young SS (1993) Resampling-based multiple testing. Wiley, New York

    Google Scholar 

  30. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  31. Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29(4):1165–1188

    Article  Google Scholar 

  32. Zaykin DV, Young SS, Westfall PH (2000) Letter to editor. using the false discovery rate in the genetic dissection of complex traits. Genetics 154:1917–1918

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsueh HM, Chen JJ, Kodell RL (2003) Comparison of methods for estimating the number of true null hypotheses in multiplicity testing. J Biopharm Stat 13(4):675–689

    Article  PubMed  Google Scholar 

  35. Tsai CA, Hsueh HM, Chen JJ (2003) Estimation of false discovery rates in multiple testing: application to gene microarray data. Biometrics 59(4):1071–1081

    Article  PubMed  Google Scholar 

  36. Delongchamp RR, Bowyer JF, Chen JJ, Kodell RL (2004) Multiple-testing strategy for analyzing cDNA array data on gene expression. Biometrics 60(3):774–782

    Article  PubMed  Google Scholar 

  37. Chen JJ, Wang SJ, Tsai CA, Lin CJ (2007) Selection of differentially expressed genes in microarray data analysis. Pharmacogenomics J 7:212–220

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cao, R., López-de-Ullibarri, I. (2019). ROC Curves for the Statistical Analysis of Microarray Data. In: Bolón-Canedo, V., Alonso-Betanzos, A. (eds) Microarray Bioinformatics. Methods in Molecular Biology, vol 1986. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9442-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9442-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9441-0

  • Online ISBN: 978-1-4939-9442-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics