Skip to main content

Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography: An Overview

  • Protocol
Chiral Separations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1985))

Abstract

This chapter summarizes the application of polysaccharide-based chiral stationary phases (CSPs) for separation of enantiomers in high-performance liquid chromatography (HPLC). Since this book contains dedicated chapters on enantioseparations using supercritical fluid chromatography (SFC), or capillary electrochromatography (CEC), the application of polysaccharide-based materials in these modes of liquid-phase separation techniques is touched just superficially. Special emphasis is directed toward a discussion of the optimization of polysaccharide-based chiral selectors, their attachment onto the carrier, and the optimization of the support. The optimization of the separation of enantiomers based on various parameters such as mobile phase composition and temperature is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Willstätter R (1904) Über einen Versuch zur Theorie des Färbens. Ber Dtsch Chem Ges 37:3758–3760

    Article  Google Scholar 

  2. Henderson GM, Rule HG (1939) A new method of resolving a racemic compound. J Chem Soc:1568–1573

    Google Scholar 

  3. Prelog V, Wieland P (1944) Über die Spaltung der Tröger'schen Base in optische Antipoden, ein Beitrag zur Stereochemie des dreiwertigen Stickstoffs. Helv Chim Acta 27:1127–1134

    Article  CAS  Google Scholar 

  4. Kotake M, Sakan T, Nakamura N, Senoh S (1951) Resolution into optical isomers of some amino acids by paper chromatography. J Am Chem Soc 73:2973–2974

    Article  CAS  Google Scholar 

  5. Mayer W, Merger F (1961) Darstellung optisch aktiver Catechine durch Racemattrennung mit Hilfe der Adsorptionschromatographie an Cellulose. Liebigs Ann Chem 644:65–69

    Article  CAS  Google Scholar 

  6. Lüttringhaus A, Hess U, Rosenbaum HJ (1967) Conformational enantiomerism. I. Optically active 4,5,6,7-dibenzo-1,2-dithiacyclooctadiene. Z Naturforsch B 22:296–1300

    Article  Google Scholar 

  7. Hesse G, Hagel R (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6:277–280

    Article  CAS  Google Scholar 

  8. Steckelberg W, Bloch M, Musso H (1968) Notiz zur Antipodentrennung von Biphenylderivaten durch Chromatographie. Chem Ber 101:1519–1521

    Article  CAS  Google Scholar 

  9. Krebs H, Wagner JA, Diewald J (1956) Über die chromatographische Spaltung von Racematen III. Versuche zur Aktivierung organischer Hydroxy- und Aminoverbindungen mit asymmetrischem C-Atom. Chem Ber 89:1875–1883

    Article  CAS  Google Scholar 

  10. Blaschke G (1980) Chromatographic resolution of racemates. Angew Chem Inl Ed Engl 19:13–24

    Article  Google Scholar 

  11. Francotte E, Wolf RM, Lohmann D, Mueller R (1985) Chromatographic resolution of racemates on chiral stationary phases. I. Influence of the supramolecular structure of cellulose triacetate. J Chromatogr 347:25–37

    Article  CAS  Google Scholar 

  12. Koller H, Rimböck K-H, Mannschreck A (1983) A high-pressure liquid chromatography on triacetylcellulose. Characterization of a sorbent for the separation of enantiomers. J Chromatogr 282:89–94

    Article  CAS  Google Scholar 

  13. Okamoto Y, Kawashima M, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharide coated on silica gel. J Am Chem Soc 106:5357–5359

    Article  CAS  Google Scholar 

  14. Ikai T, Okamoto Y (2009) Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev 109:6077–6101

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto Y, Kawashima M, Yamamoto K, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution: cellulose triacetate and tribenzoate coated on silica gel. Chem Lett 13:739–740

    Article  Google Scholar 

  16. Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2005) Enantioseparation by HPLC using phenylcarbonate, benzoylformate, p-toluenesulfonylcarbamate, and benzoylcarbamates of cellulose and amylose as chiral stationary phases. Chirality 17:299–304

    Article  CAS  PubMed  Google Scholar 

  17. Ichida A, Shibata T, Okamoto I, Yuki Y, Namikoshi H, Toda Y (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19:280–284

    Article  CAS  Google Scholar 

  18. Okamoto Y, Aburatani R, Hatada K (1987) Chromatographic chiral resolution. XIV. Cellulose tribenzoate derivatives as chiral stationary phase for high-performance liquid chromatography. J Chromatogr 389:95–102

    Article  CAS  Google Scholar 

  19. Okamoto Y, Kawashima M, Hatada K (1986) Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J Chromatogr 363:173–186

    Article  CAS  Google Scholar 

  20. Yamamoto C, Yamada K, Motoya K, Kamiya Y, Kamigaito M, Okamoto Y, Aratani T (2006) Preparation of HPLC chiral packing materials using cellulose tris(4-methylbenzoate) for the separation of chrysanthemate isomers. J Polym Sci Part A Polym Chem 44:5087–5097

    Article  CAS  Google Scholar 

  21. Okamoto Y, Aburatani R, Fukumoto T, Hatada K (1987) Useful chiral stationary phases for HPLC. Amylose tris(3,5-dimethylphenylcarbamate) and amylose tris(3,5-dichlorophenylcarbamate). Chem Lett 16:1857–1860

    Article  Google Scholar 

  22. Chankvetadze B, Yashima E, Okamoto Y (1993) Tris(chloro- and methyl-disubstituted phenylcarbamate)s of cellulose as chiral stationary phases for chromatographic enantioseparation. Chem Lett 22:617–620

    Article  Google Scholar 

  23. Chankvetadze B, Yashima E, Okamoto Y (1994) Chloro-methyl-phenylcarbamate derivatives of cellulose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A 670:39–49

    Article  CAS  Google Scholar 

  24. Chankvetadze B, Yashima E, Okamoto Y (1995) Dimethyl-, dichloro- and chloromethyl-phenylcarbamate derivatives of amylose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A 694:101–109

    Article  CAS  Google Scholar 

  25. Chankvetadze B, Chankvetadze L, Sidamonidze S, Kasashima E, Yashima E Okamoto Y (1997) 3-Fluoro-, 3-bromo-, and 3-chloro-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for HPLC enantioseparation. J Chromatog A 787:67–77

    Google Scholar 

  26. Yamamoto, Okamoto Y (2004) Optically active polymers for chiral separation. Bull Chem Soc Jpn 77:227–257

    Article  CAS  Google Scholar 

  27. Chankvetadze B, Chankvetadze L, Sidamonidze S, Yashima E, Okamoto Y (1996) High-performance liquid chromatography enantioseparation of chiral pharmaceuticals using tris(chloro-methylphenylcarbamate)s of cellulose. J Pharm Biomed Anal 14:1295–1303

    Article  CAS  PubMed  Google Scholar 

  28. Felix G (2001) Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906:171–184

    Article  CAS  PubMed  Google Scholar 

  29. Kaida Y, Okamoto Y (1993) Optical resolution on regioselectively carbamoylated cellulose and amylose with 3,5-dimethylphenyl and 3,5-dichlorophenyl isocyanates. Bull Chem Soc Jpn 66:2225–2232

    Article  CAS  Google Scholar 

  30. Kondo S, Yamamoto C, Kamigaito M, Okamoto Y (2008) Synthesis and chiral recognition of novel regioselectively substituted amylose derivatives. Chem Lett 37:558–559

    Article  CAS  Google Scholar 

  31. Francotte ER, Wolf W (1991) Benzoyl cellulose beads in the pure polymeric form as a new powerful sorbent for the chromatographic resolution of racemates. Chirality 3:43–55

    Article  CAS  Google Scholar 

  32. Ikai T, Muraki R, Yamamoto C, Kamigaito M, Okamoto Y (2004) Cellulose derivative-based beads as chiral stationary phase for HPLC. Chem Lett 33:1188–1189

    Article  CAS  Google Scholar 

  33. Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2008) Organic-inorganic hybrid materials for efficient enantioseparation using cellulose 3,5-dimethylphenylcarbamate and tetraethyl orthosilicate. Chem Asian J 3:1494–1499

    Article  CAS  PubMed  Google Scholar 

  34. Park J-H, Whang Y-C, Jung Y-J, Okamoto Y, Yamamoto C, Carr PW, McNeff CV (2003) Separation of racemic compounds on amylose and cellulose dimethylphenylcarbamate-coated zirconia in HPLC. J Sep Sci 26:1331–1336

    Article  CAS  Google Scholar 

  35. Xu H, Zhang Y, Lu Q (2009) Polysaccharide-based chiral stationary phases and method for their preparation, US Patent application number 0216006

    Google Scholar 

  36. Seo Y-J, Kang G-W, Park S-T, Moon M, Park J-H, Cheong W-J (2007) Titanized or zirconized porous silica modified with a cellulose derivative as new chiral stationary phases. Bull Kor Chem Soc 28:999–1004

    Article  CAS  Google Scholar 

  37. Ling F, Brahmachary E, Xu M, Svec F, Fréchet JMJ (2003) Polymer-bound cellulose phenylcarbamate derivatives as chiral stationary phases for enantioselective HPLC. J Sep Sci 26:1337–1346

    Article  CAS  Google Scholar 

  38. Chankvetadze B, Yamamoto C, Okamoto Y (2003) Very fast enantioseparations in HPLC using cellulose tris(3,5-dimethylphenylcarbamate) as chiral stationary phase. Chem Lett 32:850–851

    Article  CAS  Google Scholar 

  39. Chankvetadze B, Ikai T, Yamamoto C, Okamoto Y (2004) High-performance liquid chromatographic enantioseparations on monolithic silica column containing covalently attached 3,5-dimethylphenylcarbamate derivative of cellulose. J Chromatogr A 1042:55–60

    Article  CAS  PubMed  Google Scholar 

  40. Guiochon G, Gritti F (2011) Shell particles, trials, tribulations and triumphs. J Chromatogr A 1218:1915–1938

    Article  CAS  PubMed  Google Scholar 

  41. Lomsadze K, Jibuti G, Farkas T, Chankvetadze B (2012) Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles. J Chromatogr A 1234:50–55

    Article  CAS  PubMed  Google Scholar 

  42. Kharaishvili Q, Jibuti G, Farkas T, Chankvetadze B (2016) Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 1467:163–168

    Article  CAS  PubMed  Google Scholar 

  43. Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Farkas T, Chity M, Chankvetadze B (2017) Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 1482:32–38

    Article  CAS  PubMed  Google Scholar 

  44. Bezhitashvili L, Bardavelidze A, Mskhiladze A, Volonterio A, Gumustas M, Ozkan S, Farkas T, Chankvetadze B (2018) Application of cellulose 3,5-dichlorophenylcarbamate covalently immobilized on superficially porous silica for separation of enantiomers in ultra high-performance liquid chromatography. J Chromatogr A 1571:132–139

    Article  CAS  PubMed  Google Scholar 

  45. Khundadze N, Pantsulaia S, Fanali C, Farkas T, Chankvetadze B (2018) On our way to sub-second separations of enantiomers in high-performance liquid chromatography. J Chromatogr A 1572:37–43

    Article  CAS  PubMed  Google Scholar 

  46. Okamoto Y, Aburatani R, Miura S, Hatada K (1987) Chiral stationary phases for HPLC: cellulose tris(3,5-dimethylphenylcarbamate) and tris(3,5-dichlorophenylcarbamate) chemically bonded to silica gel. J Liq Chromatogr 10:1613–1628

    Article  CAS  Google Scholar 

  47. Franco P, Senso A, Oliveros L, Minguillon C (2001) Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906:155–170

    Article  CAS  PubMed  Google Scholar 

  48. Yashima E, Fukaya H, Okamoto Y (1994) 3,5-Dimethylphenylcarbamates of cellulose and amylose regioselectively bonded to silica gel as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A 677:11–19

    Article  CAS  Google Scholar 

  49. Kimata K, Tsuboi R, Hosoya K, Tanaka N (1993) Chemically bonded chiral stationary phase prepared by the polymerization of cellulose p-vinylbenzoate. Anal Methods Instrum 1:23–29

    CAS  Google Scholar 

  50. Oliveros L, Lopez P, Minguillon C, Franco P (1995) Chiral chromatographic discrimination ability of a cellulose 3,5-dimethyl-phenylcarbamate/10-undecenoate mixed derivative fixed on several chromatographic matrices. J Liq Chromatogr 18:152–1532

    Article  Google Scholar 

  51. Chen X, Jin W, Qin F, Liu Y, Zou H, Guo B (2003) Capillary electrochromatographic separation of enantiomers on chemically bonded type of cellulose derivative chiral stationary phases with a positively charged spacer. Electrophoresis 24:2559–2566

    Article  CAS  PubMed  Google Scholar 

  52. Enomoto N, Furukawa S, Ogasawara Y, Akano H, Kawamura Y, Yashima E, Okamoto Y (1996) Preparation of silica gel-bonded amylose trough enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivatives in HPLC. Anal Chem 68:2798–2804

    Article  CAS  PubMed  Google Scholar 

  53. Kubota T, Yamamoto C, Okamoto Y (2004) Phenylcarbamate derivatives of cellulose and amylose immobilized onto silica gel as chiral stationary phases for high performance liquid chromatography. J Polym Sci Part A: Polym Chem 42:4704–4710

    Article  CAS  Google Scholar 

  54. Chen X, Yamamoto C, Okamoto Y (2006) One-pot synthesis of polysaccharide 3,5-dimethylphenylcarbamates having a random vinyl group for immobilization on silica gel as chiral stationary phases. J Sep Sci 29:1432–1439

    Article  CAS  PubMed  Google Scholar 

  55. Francotte E, Huynh D (2002) Immobilized halogenphenylcarbamate derivatives of cellulose as novel stationary phases for enantioselective drug analysis. J Pharm Biomed Anal 27:421–429

    Article  CAS  PubMed  Google Scholar 

  56. Francotte E, Huynh D, Zhang T (2016) Photochemically immobilized 4-methylbenzoyl cellulose as a powerful chiral stationary phase for enantioselective chromatography. Molecules 21 (12) article number 1740.

    Article  CAS  Google Scholar 

  57. Chen X, Liu Y, Qin F, Kong L, Zou H (2003) Synthesis of covalently bonded cellulose derivative chiral stationary phases with a bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate. J Chromatogr A 1010:185–194

    Article  CAS  PubMed  Google Scholar 

  58. Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2006) Efficient immobilization of cellulose phenylcarbamate bearing alkoxysilyl group onto silica gel by intermolecular polycondensation and its chiral recognition. Chem Lett 35:1250–1251

    Article  CAS  Google Scholar 

  59. Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2007) Immobilization of polysaccharide derivatives onto silica gel. Facile synthesis of chiral packing materials by means of intermolecular polycondensation of triethoxysilyl groups. J Chromatogr A 1157:151–158

    Article  CAS  PubMed  Google Scholar 

  60. Shen J, Ikai T, Okamoto Y (2014) Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J Chromatogr A 1363:51–61

    Article  CAS  PubMed  Google Scholar 

  61. Ghanem A, Naim L (2006) Immobilized versus coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases for the enantioselective separation of cyclopropane derivatives by liquid chromatography. J Chromatogr A 1101:171–178

    Article  CAS  PubMed  Google Scholar 

  62. Venthuyne N, Andreoli F, Fernandez S, Roussel C (2005) Reversal of elution order with immobilization of chiral selector, Poster presentation on 17-th International Symposium on Chirality, Parma, Italy, September 11–14

    Google Scholar 

  63. Tachibana K, Ohnishi A (2001) Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J Chromatogr A 906:127–154

    Article  CAS  PubMed  Google Scholar 

  64. Chankvetadze B, Kartozia I, Yamamoto C, Okamoto Y (2002) Comparative enantioseparation of selected chiral drugs on four different polysaccharide-type chiral stationary phases using polar organic mobile phases. J Pharm Biomed Anal 27:467–478

    Article  CAS  PubMed  Google Scholar 

  65. Chankvetadze B, Yamamoto C, Okamoto Y (2000) HPLC Enantioseparation with cellulose tris(3,5-dichlorophenylcarbamate) in aqueous methanol as a mobile phase. Chem Lett 29:352–353

    Article  Google Scholar 

  66. Chankvetadze B, Yamamoto C, Okamoto Y (2000) Enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate) in high-performance liquid chromatography in common size and capillary columns: potential for screening of chiral compounds. Comb Chem High Trough Scr 3:497–508

    Article  CAS  Google Scholar 

  67. Chankvetadze B, Yamamoto C, Okamoto Y (2000) Extremely high enantiomer recognition in HPLC separation of racemic 2-(benzylsulfinyl)benzamide using cellulose tris (3,5-dichlorophenylcarbamate) as a chiral stationary phase. Chem Lett 29:1176–1177

    Article  Google Scholar 

  68. Peng L, Jayapalan S, Chankvetadze B, Farkas T (2010) Reversed phase chiral HPLC and LC/MS analysis with tris(Chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. J Chromatogr A 1217:6942–6955

    Article  CAS  PubMed  Google Scholar 

  69. Dossou KSS, Chiap P, Chankvetadze B, Servais AC, Fillet M, Crommen J (2009) Enantiomer resolution of basic pharmaceuticals using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral stationary phase and polar organic mobile phases. J Chromatogr A 1216:7450–7455

    Article  CAS  PubMed  Google Scholar 

  70. Dossou KSS, Chiap P, Chankvetadze B, Servais AC, Fillet M, Crommen J (2010) Optimization of chiral pharmaceuticals enantioseparation using a coated stationary phase with cellulose tris(4-chloro-3-methyl-phenylcarbamate) as chiral selector and non-aqueous polar mobile phase. J Sep Sci 33:1699–1707

    Article  CAS  PubMed  Google Scholar 

  71. Ates H, Mangelings D, Vander Heyden Y (2008) Chiral separations in polar organic solvent chromatography: updating a screening strategy with new chlorine-containing polysaccharide-based selectors. J Chromatogr B 875:57–64

    Article  CAS  Google Scholar 

  72. Zhou L, Antonucci V, Biba M, Gong X, Ge Z (2010) Simultaneous enantioseparation of a basic active pharmaceutical ingredient compound and its neutral intermediate using reversed phase and normal phase liquid chromatography with a new type of polysaccharide stationary phase. J Pharm Biomed Anal 51:153–157

    Article  CAS  PubMed  Google Scholar 

  73. Francotte E, Jung M (1996) Enantiomer separation by open-tubular liquid chromatography and electrochromatography in cellulose-coated capillaries. Chromatographia 42:541–547

    Article  Google Scholar 

  74. Wakita T, Chankvetadze B, Yamamoto C, Okamoto Y (2002) Chromatographic enantioseparation on capillary column containing covalently bound cellulose (3,5-dichlorophenylcarbamate) as chiral stationary phase. J Sep Sci 25:167–169

    Article  CAS  Google Scholar 

  75. Krause K, Girod M, Chankvetadze B, Blaschke G (1999) Enantioseparations in normal- and reversed-phase nano-HPLC and capillary electrochromatography using polyacrylamide and polysaccharide derivatives as chiral stationary phases. J Chromatogr A 837:51–63

    Article  CAS  Google Scholar 

  76. Meyring M, Chankvetadze B, Blaschke G (2000) Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high performance liquid chromatography in common-size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography. J Chromatogr A 876:157–167

    Article  CAS  PubMed  Google Scholar 

  77. Kawamura K, Otsuka K, Terabe S (2001) Capillary electrochromatographic enantioseparations using a packed capillary with a 3 μm OD-type chiral packing. J Chromatogr A 924:251–257

    Article  CAS  PubMed  Google Scholar 

  78. Fanali S, D’Orazio G, Lomsadze K, Chankvetadze B (2008) Enantioseparations with cellulose(3-chloro-4-methylphenylcarbamate) in nano liquid chromatography and capillary electrochromatography. J Chromatogr B 875:296–303

    Article  CAS  Google Scholar 

  79. Domínguez-Vega E, Crego AL, Lomsadze K, Chankvetadze B, Marina ML (2011) Enantiomeric separation of FMOC-amino acids by nano-LC and CEC using a new chiral stationary phase, cellulose tris(3-chloro-4-methylphenylcarbamate). Electrophoresis 32:2700–2707

    Article  PubMed  CAS  Google Scholar 

  80. Chankvetadze B, Yamamoto C, Tanaka N, Nakanishi K, Okamoto Y (2004) Enantioseparations on monolithic silica capillary column modified with cellulose tris(3,5-dimethylphenylcarbamate). J Sep Sci 27:905–911

    Article  CAS  PubMed  Google Scholar 

  81. Chankvetadze B, Kubota T, Ikai T, Yamamoto C, Tanaka N, Nakanishi K, Okamoto Y (2006) High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. J Sep Sci 29:1988–1995

    Article  CAS  PubMed  Google Scholar 

  82. Chankvetadze B, Yamamoto C, Kamigaito M, Tanaka N, Nakanishi K, Okamoto Y (2006) High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). J Chromatogr A 1110:46–52

    Article  CAS  PubMed  Google Scholar 

  83. Zhang Z, Wu R, Wu M, Zou H (2010) Recent progress of chiral monolithic stationary phases in CEC and capillary LC. Electrophoresis 31:1457–1466

    Article  CAS  PubMed  Google Scholar 

  84. Francotte E (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397

    Article  CAS  PubMed  Google Scholar 

  85. Leek H, Thunberg L, Jonson AC, Öhlén K, Klarqvist M (2017) Strategy for large-scale isolation of enantiomers in drug discovery. Drug Discov Today 22:133–139

    Article  CAS  PubMed  Google Scholar 

  86. Shen J, Okamoto Y (2016) Efficient separation of enantiomers using Stereoregular chiral polymers. Chem Rev 116:1094–1138

    Article  CAS  PubMed  Google Scholar 

  87. Padró JM, Keunchkarian S (2018) State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchim J 140:142–157

    Article  CAS  Google Scholar 

  88. Lomsadze K, Merlani M, Barbakadze V, Farkas T, Chankvetadze B (2012) Enantioseparation of chiral epoxides with polysaccharide-based chiral columns in HPLC. Chromatographia 75:839–845

    Article  CAS  Google Scholar 

  89. Pinaka A, Vougioukalakis GC, Dimotikali D, Yannakopoulou E, Chankvetadze B, Papadopoulos K (2013) Green asymmetric synthesis: β-amino alcohol-catalyzed direct asymmetric aldol reactions in aqueous micelles. Chirality 25:119–125

    Article  CAS  PubMed  Google Scholar 

  90. Matarashvili I, Shvangiradze I, Chankvetadze L, Sidamonidze S, Takaishvili N, Farkas T, Chankvetadze B (2015) High-performance liquid chromatographic separation of stereoisomers of chiral triazole derivatives with polysaccharide-based chiral columns and polar organic mobile phases. J Sep Sci 38:4173–4179

    Article  CAS  PubMed  Google Scholar 

  91. Chankvetadze L, Ghibradze N, Karchkhadze M, Peng L, Farkas T, Chankvetadze B (2011) Enantiomer elution order reversal of FMOC-isoleucine by variation of mobile phase temperature and composition. J Chromatogr A 1218:6554–6560

    Article  CAS  PubMed  Google Scholar 

  92. Okamoto M (2002) Reversal of elution order during the chiral separation in high performance liquid chromatography. J Pharm Biomed Anal 27:401–407

    Article  CAS  PubMed  Google Scholar 

  93. Cirilli R, Ferretti R, Gallinella B, Zanitti L, La Torre F (2004) A new application of stopped-flow chiral HPLC: inversion of enantiomer elution order. J Chromatogr A 1061:27–34

    Article  CAS  PubMed  Google Scholar 

  94. Wang F, O’Brien T, Dowling T, Bicker G, Wyvratt J (2002) Unusual effect of column temperature on chromatographic enantioseparation of dihydropyrimidinone acid and methyl ester on amylose chiral stationary phase. J Chromatogr A 958:69–77

    Article  CAS  PubMed  Google Scholar 

  95. Ma S, Shen S, Lee H, Eriksson M, Zeng X, Xu J, Fandrick K, Yee N, Senanayake C, Grinberg N (2009) Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism. Reversal of elution order of N-substituted alpha-methyl phenylalanine esters. J Chromatogr A 1216:3784–3793

    Article  CAS  PubMed  Google Scholar 

  96. Dossou KSS, Edorh PA, Chiap P, Chankvetadze B, Servais A-C, Fillet M, Crommen J (2011) LC method for the enantiomeric purity determination of S-amlodipine with the special emphasis on the reversal of the enantiomer elution order using chlorinated cellulose-based chiral stationary phases and polar non-aqueous mobile phases. J Sep Sci 34:1772–1780

    Article  CAS  PubMed  Google Scholar 

  97. Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous-organic and normal-phase eluents. J Chromatogr A 922:127–137

    Article  CAS  PubMed  Google Scholar 

  98. Matarashvili I, Ghughunishvili D, Chankvetadze L, Takaishvili N, Tsintsadze M, Khatiashvili T, Farkas T, Chankvetadze B (2017) Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous mobile phases in high-performance liquid chromatography: typical reversed-phase behavior? J Chromatogr A 1483:86–92

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Cite this protocol

Chankvetadze, B. (2019). Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography: An Overview. In: Scriba, G.K.E. (eds) Chiral Separations. Methods in Molecular Biology, vol 1985. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9438-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9438-0_6

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9437-3

  • Online ISBN: 978-1-4939-9438-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics