Skip to main content

Quantifying Intermediary Metabolism and Lipogenesis in Cultured Mammalian Cells Using Stable Isotope Tracing and Mass Spectrometry

  • Protocol
  • First Online:
High-Throughput Metabolomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1978))

Abstract

Metabolism plays a central role in virtually all diseases, including diabetes, cancer, and neurodegeneration. Detailed analysis is required to identify the specific metabolic pathways dysregulated in the context of a given disease or biological perturbation. Measurement of metabolite concentrations can provide some insights into altered pathway activity or enzyme function, but since most biochemicals are metabolized by various enzymes in distinct pathways within cells and tissues, these approaches are somewhat limited. By applying metabolic tracers to a biological system, one can visualize pathway-specific information depending on the tracer used and analytes measured. To this end, stable isotope tracers and mass spectrometry are emerging as important tools for the examination of metabolic pathways and fluxes in cultured mammalian cells and other systems. Here, we describe a detailed workflow for quantifying metabolic processes in mammalian cell cultures using stable isotopes and gas chromatography coupled to mass spectrometry (GC-MS). As a case study, we apply 13C isotopic labeled glucose and glutamine to a cancer cell line to quantify substrate utilization for TCA metabolism and lipogenesis. Guidelines are also provided for interpretation of data and considerations for application to other cell systems. Ultimately, this approach provides a robust and precise method for quantifying stable isotope labeling in metabolite pools that can be applied to diverse biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cordes T, Metallo CM (2016) Tracing insights into human metabolism using chemical engineering approaches. Curr Opin Chem Eng 14:72–81. https://doi.org/10.1016/j.coche.2016.08.019

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3:195–206. https://doi.org/10.1006/mben.2001.0187

    Article  CAS  PubMed  Google Scholar 

  3. Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62. https://doi.org/10.1038/msb4100109

    Article  PubMed  PubMed Central  Google Scholar 

  4. Zamboni N, Saghatelian A, Patti GJ (2015) Defining the metabolome: size, flux, and regulation. Mol Cell 58:699–706. https://doi.org/10.1016/j.molcel.2015.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wishart DS (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15:473–484. https://doi.org/10.1038/nrd.2016.32

    Article  CAS  PubMed  Google Scholar 

  6. Metallo CM, Walther JL, Stephanopoulos G (2009) Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. J Biotechnol 144:167–174. https://doi.org/10.1016/j.jbiotec.2009.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walther JL, Metallo CM, Zhang J, Stephanopoulos G (2012) Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. Metab Eng 14:162–171. https://doi.org/10.1016/j.ymben.2011.12.004

    Article  CAS  PubMed  Google Scholar 

  8. Crown SB, Long CP, Antoniewicz MR (2016) Optimal tracers for parallel labeling experiments and 13C metabolic flux analysis: a new precision and synergy scoring system. Metab Eng 38:10–18. https://doi.org/10.1016/j.ymben.2016.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linares JF, Cordes T, Duran A et al (2017) ATF4-induced metabolic reprograming is a synthetic vulnerability of the p62-deficient tumor stroma. Cell Metab 26:817–829.e6. https://doi.org/10.1016/j.cmet.2017.09.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Metallo CM, Gameiro PA, Bell EL et al (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481:380–384. https://doi.org/10.1038/nature10602

    Article  CAS  Google Scholar 

  11. Parker SJ, Svensson RU, Divakaruni AS et al (2017) LKB1 promotes metabolic flexibility in response to energy stress. Metab Eng 43:208–217. https://doi.org/10.1016/j.ymben.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  12. Zhao D, Badur MG, Luebeck J et al (2018) Combinatorial CRISPR-Cas9 metabolic screens reveal critical redox control points dependent on the KEAP1-NRF2 regulatory axis. Mol Cell 69:699–708.e7. https://doi.org/10.1016/j.molcel.2018.01.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Divakaruni AS, Wallace M, Buren C et al (2017) Inhibition of the mitochondrial pyruvate carrier protects from excitotoxic neuronal death. J Cell Biol 216:1091–1105. https://doi.org/10.1083/jcb.201612067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cordes T, Wallace M, Michelucci A et al (2016) Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels. J Biol Chem 291:14274–14284. https://doi.org/10.1074/jbc.M115.685792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Badur MG, Divakaruni AS et al (2016) Distinct metabolic states can support self-renewal and lipogenesis in human pluripotent stem cells under different culture conditions. Cell Rep 16:1536–1547. https://doi.org/10.1016/j.celrep.2016.06.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vacanti NM, Divakaruni AS, Green CR et al (2014) Regulation of substrate utilization by the mitochondrial pyruvate carrier. Mol Cell 56:425–435. https://doi.org/10.1016/j.molcel.2014.09.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Green CR, Wallace M, Divakaruni AS et al (2016) Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol 12:15–21. https://doi.org/10.1038/nchembio.1961

    Article  CAS  PubMed  Google Scholar 

  18. Metallo CM, Vander Heiden MG (2013) Understanding metabolic regulation and its influence on cell physiology. Mol Cell 49:388–398. https://doi.org/10.1016/j.molcel.2013.01.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Badur MG, Metallo CM (2018) Reverse engineering the cancer metabolic network using flux analysis to understand drivers of human disease. Metab Eng 45:95–108. https://doi.org/10.1016/j.ymben.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  20. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/y59-099

    Article  CAS  PubMed  Google Scholar 

  21. Badur MG, Zhang H, Metallo CM (2015) Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance. Biotechnol J 10:1600–1611. https://doi.org/10.1002/biot.201400749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Miranda-Santos I, Gramacho S, Pineiro M et al (2015) Mass isotopomer analysis of nucleosides isolated from RNA and DNA using GC/MS. Anal Chem 87:617–623. https://doi.org/10.1021/ac503305w

    Article  CAS  PubMed  Google Scholar 

  23. Long CP, Au J, Gonzalez JE, Antoniewicz MR (2016) 13C metabolic flux analysis of microbial and mammalian systems is enhanced with GC-MS measurements of glycogen and RNA labeling. Metab Eng 38:65–72. https://doi.org/10.1016/j.ymben.2016.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dandekar T, Fieselmann A, Majeed S, Ahmed Z (2014) Software applications toward quantitative metabolic flux analysis and modeling. Brief Bioinform 15:91–107. https://doi.org/10.1093/bib/bbs065

    Article  PubMed  Google Scholar 

  25. Fernandez CA, Des Rosiers C, Previs SF et al (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262. https://doi.org/10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3

    Article  CAS  PubMed  Google Scholar 

  26. Kind T, Wohlgemuth G, Lee DY et al (2009) FiehnLib: mass spectral and retention index libraries for metabolomics based on quadrupole and time-of-flight gas chromatography/mass spectrometry. Anal Chem 81:10038–10048. https://doi.org/10.1021/ac9019522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vincent G, Bouchard B, Khairallah M, Des Rosiers C (2004) Differential modulation of citrate synthesis and release by fatty acids in perfused working rat hearts. Am J Physiol Circ Physiol 286:H257–H266. https://doi.org/10.1152/ajpheart.00717.2003

    Article  CAS  Google Scholar 

  28. Young JD (2014) INCA: a computational platform for isotopically non-stationary metabolic flux analysis. Bioinformatics 30:1333–1335. https://doi.org/10.1093/bioinformatics/btu015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cantor JR, Abu-Remaileh M, Kanarek N et al (2017) Physiologic medium rewires cellular metabolism and reveals uric acid as an endogenous inhibitor of UMP synthase. Cell 169:258–272.e17. https://doi.org/10.1016/j.cell.2017.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuri-Harcuch W, Wise LS, Green H (1978) Interruption of the adipose conversion of 3T3 cells by biotin deficiency: differentiation without triglyceride accumulation. Cell 14:53–59

    CAS  PubMed  Google Scholar 

  31. Aoki J, Taira A, Takanezawa Y et al (2002) Serum lysophosphatidic acid is produced through diverse phospholipase pathways. J Biol Chem 277:48737–48744. https://doi.org/10.1074/jbc.M206812200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank members of the Metallo Lab for helpful discussions. Figure 2 was adapted with permission from unpublished work by Jamey D. Young (Vanderbilt University). This work was supported, in part, by NIH grant R01CA188652, a Searle Scholar Award, a NSF CAREER Award (1454425), a Camille Dreyfus Teacher Scholar Award (all to C.M.M.), and Deutsche Forschungsgesellschaft (German Research Foundation) (CO1488/1-1 to T.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian M. Metallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cordes, T., Metallo, C.M. (2019). Quantifying Intermediary Metabolism and Lipogenesis in Cultured Mammalian Cells Using Stable Isotope Tracing and Mass Spectrometry. In: D'Alessandro, A. (eds) High-Throughput Metabolomics. Methods in Molecular Biology, vol 1978. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9236-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9236-2_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9235-5

  • Online ISBN: 978-1-4939-9236-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics