Skip to main content

Use of AAV Vectors for CRISPR-Mediated In Vivo Genome Editing in the Retina

  • Protocol
  • First Online:
Adeno-Associated Virus Vectors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1950))

Abstract

Degenerative retinal diseases such as retinitis pigmentosa (RP) and Leber’s congenital amaurosis (LCA) may lead to blindness without effective treatment. With the rapid advancement of the CRISPR/Cas9 genome editing technology, in vivo application of CRISPR/Cas9 holds immense potential for treatment of these diseases. Adeno-associated virus (AAV) vectors are an ideal gene transfer tool for delivery of CRISPR components to the retina. Here, we describe a protocol for utilizing an AAV-based CRISPR/Cas9 system for in vivo genome editing in the retina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lau CH, Suh Y (2017) In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease. F1000Res 6:2153. https://doi.org/10.12688/f1000research.11243.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang S, Sengel C, Emerson MM, Cepko CL (2014) A gene regulatory network controls the binary fate decision of rod and bipolar cells in the vertebrate retina. Dev Cell 30(5):513–527. https://doi.org/10.1016/j.devcel.2014.07.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bakondi B, Lv W, Lu B, Jones MK, Tsai Y, Kim KJ, Levy R, Akhtar AA, Breunig JJ, Svendsen CN, Wang S (2016) In vivo CRISPR/Cas9 gene editing corrects retinal dystrophy in the S334ter-3 rat model of autosomal dominant retinitis pigmentosa. Mol Ther 24(3):556–563. https://doi.org/10.1038/mt.2015.220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Latella MC, Di Salvo MT, Cocchiarella F, Benati D, Grisendi G, Comitato A, Marigo V, Recchia A (2016) In vivo editing of the human mutant rhodopsin gene by electroporation of plasmid-based CRISPR/Cas9 in the mouse retina. Mol Ther Nucleic Acids 5(11):e389. https://doi.org/10.1038/mtna.2016.92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li P, Kleinstiver BP, Leon MY, Prew MS, Navarro-Gomez D, Greenwald SH, Pierce EA, Joung JK, Liu Q (2018) Allele-specific CRISPR/Cas9 genome editing of the single-base P23H mutation for rhodopsin associated dominant retinitis pigmentosa. bioRxiv. https://doi.org/10.1101/197962

  7. Kim K, Park SW, Kim JH, Lee SH, Kim D, Koo T, Kim KE, Kim JH, Kim JS (2017) Genome surgery using Cas9 ribonucleoproteins for the treatment of age-related macular degeneration. Genome Res 27(3):419–426. https://doi.org/10.1101/gr.219089.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hung SS, Chrysostomou V, Li F, Lim JK, Wang JH, Powell JE, Tu L, Daniszewski M, Lo C, Wong RC, Crowston JG, Pebay A, King AE, Bui BV, Liu GS, Hewitt AW (2016) AAV-mediated CRISPR/Cas gene editing of retinal cells in vivo. Invest Ophthalmol Vis Sci 57(7):3470–3476. https://doi.org/10.1167/iovs.16-19316

    Article  CAS  PubMed  Google Scholar 

  9. Giannelli SG, Luoni M, Castoldi V, Massimino L, Cabassi T, Angeloni D, Demontis G, Leocani L, Andreazzoli M, Broccoli V (2018) Cas9/sgRNA selective targeting of the P23H Rhodopsin mutant allele for treating retinitis pigmentosa by intravitreal AAV9.PHP.B-based delivery. Hum Mol Genet 27(5):761–779. https://doi.org/10.1093/hmg/ddx438

    Article  CAS  PubMed  Google Scholar 

  10. Kim E, Koo T, Park SW, Kim D, Kim K, Cho HY, Song DW, Lee KJ, Jung MH, Kim S, Kim JH, Kim JH, Kim JS (2017) In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni. Nat Commun 8:14500. https://doi.org/10.1038/ncomms14500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Huang X, Zhou G, Wu W, Duan Y, Ma G, Song J, Xiao R, Vandenberghe L, Zhang F, D’Amore PA, Lei H (2017) Genome editing abrogates angiogenesis in vivo. Nat Commun 8(1):112. https://doi.org/10.1038/s41467-017-00140-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruan GX, Barry E, Yu D, Lukason M, Cheng SH, Scaria A (2017) CRISPR/Cas9-mediated genome editing as a therapeutic approach for leber congenital amaurosis 10. Mol Ther 25(2):331–341. https://doi.org/10.1016/j.ymthe.2016.12.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J, Kim EJ, Hatanaka F, Yamamoto M, Araoka T, Li Z, Kurita M, Hishida T, Li M, Aizawa E, Guo S, Chen S, Goebl A, Soligalla RD, Qu J, Jiang T, Fu X, Jafari M, Esteban CR, Berggren WT, Lajara J, Nunez-Delicado E, Guillen P, Campistol JM, Matsuzaki F, Liu GH, Magistretti P, Zhang K, Callaway EM, Zhang K, Belmonte JC (2016) In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540(7631):144–149. https://doi.org/10.1038/nature20565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yu W, Mookherjee S, Chaitankar V, Hiriyanna S, Kim JW, Brooks M, Ataeijannati Y, Sun X, Dong L, Li T, Swaroop A, Wu Z (2017) Nrl knockdown by AAV-delivered CRISPR/Cas9 prevents retinal degeneration in mice. Nat Commun 8:14716. https://doi.org/10.1038/ncomms14716

    Article  PubMed  PubMed Central  Google Scholar 

  15. Holmgaard A, Askou AL, Benckendorff JNE, Thomsen EA, Cai Y, Bek T, Mikkelsen JG, Corydon TJ (2017) In vivo knockout of the vegfa gene by lentiviral delivery of CRISPR/Cas9 in mouse retinal pigment epithelium cells. Mol Ther Nucleic Acids 9:89–99. https://doi.org/10.1016/j.omtn.2017.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pinello L, Canver MC, Hoban MD, Orkin SH, Kohn DB, Bauer DE, Yuan GC (2016) Analyzing CRISPR genome-editing experiments with CRISPResso. Nat Biotechnol 34(7):695–697. https://doi.org/10.1038/nbt.3583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308. https://doi.org/10.1038/nprot.2013.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616. https://doi.org/10.1167/iovs.04-0541

    Article  PubMed  Google Scholar 

  20. Kretschmer F, Sajgo S, Kretschmer V, Badea TC (2015) A system to measure the optokinetic and optomotor response in mice. J Neurosci Methods 256:91–105. https://doi.org/10.1016/j.jneumeth.2015.08.007

    Article  PubMed  PubMed Central  Google Scholar 

  21. Douglas RM, Alam NM, Silver BD, McGill TJ, Tschetter WW, Prusky GT (2005) Independent visual threshold measurements in the two eyes of freely moving rats and mice using a virtual-reality optokinetic system. Vis Neurosci 22(5):677–684. https://doi.org/10.1017/S0952523805225166

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yu, W., Wu, Z. (2019). Use of AAV Vectors for CRISPR-Mediated In Vivo Genome Editing in the Retina. In: Castle, M. (eds) Adeno-Associated Virus Vectors. Methods in Molecular Biology, vol 1950. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9139-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9139-6_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9138-9

  • Online ISBN: 978-1-4939-9139-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics