Skip to main content

Mass Spectrometry-Based Proteomics to Define Intracellular Collagen Interactomes

  • Protocol
  • First Online:
Collagen

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1944))

Abstract

We present the development, optimization, and application of constructs, cell lines, covalent cross-linking methods, and immunoprecipitation strategies that enable robust and accurate determination of collagen interactomes via mass spectrometry-based proteomics. Using collagen type-I as an example, protocols for working with large, repetitive, and GC-rich collagen genes are described, followed by strategies for engineering cells that stably and inducibly express antibody epitope-tagged collagen-I. Detailed steps to optimize collagen interactome cross-linking and perform immunoprecipitations are then presented. We conclude with a discussion of methods to elute collagen interactomes and prepare samples for mass spectrometry-mediated identification of interactors. Throughout, caveats and potential problems researchers may encounter when working with collagen are discussed. We note that the protocols presented herein may be readily adapted to define interactomes of other collagen types, as well as to determine comparative interactomes of normal and disease-causing collagen variants using quantitative isotopic labeling (SILAC)- or isobaric mass tags (iTRAQ or TMT)-based mass spectrometry analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eyre DR (1980) Collagen: molecular diversity in the body’s protein scaffold. Science 207:1315–1322. https://doi.org/10.1126/science.7355290

    Article  CAS  PubMed  Google Scholar 

  2. Brinckmann J (2005) Collagens at a glance. Top Curr Chem 247:1–6. https://doi.org/10.1007/b103817

    Article  CAS  Google Scholar 

  3. Ricard-Blum S (2011) The collagen family. CSHL Perspect Biol 3:a004978. https://doi.org/10.1101/cshperspect.a004978

    Article  Google Scholar 

  4. Shoulders MD, Raines RT (2009) Collagen structure and stability. Annu Rev Biochem 78:929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ishikawa Y, Bachinger HP (2013) A molecular ensemble in the rER for procollagen maturation. Biochim Biophys Acta 1833:2479–2491. https://doi.org/10.1016/j.bbamcr.2013.04.008

    Article  CAS  PubMed  Google Scholar 

  6. Morello R, Bertin TK, Chen YQ, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bachinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao ZQ, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304. https://doi.org/10.1016/j.cell.2006.08.039

    Article  CAS  PubMed  Google Scholar 

  7. Myllyharju J, Kivirikko KI (2001) Collagens and collagen-related diseases. Ann Med 33:7–21. https://doi.org/10.3109/07853890109002055

    Article  CAS  PubMed  Google Scholar 

  8. Barnes AM, Cabral WA, Weis M, Makareeva E, Mertz EL, Leikin S, Eyre D, Trujillo C, Marini JC (2012) Absence of FKBP10 in recessive type XI osteogenesis imperfecta leads to diminished collagen cross-linking and reduced collagen deposition in extracellular matrix. Hum Mutat 33:1589–1598. https://doi.org/10.1002/Humu.22139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marini JC, Reich A, Smith SM (2014) Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr 26:500–507. https://doi.org/10.1097/Mop.0000000000000117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Labbadia J, Morimoto RI (2015) The biology of proteostasis in aging and disease. Annu Rev Biochem 84:435–464. https://doi.org/10.1146/annurev-biochem-060614-033955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. https://doi.org/10.1038/nature10317

    Article  CAS  PubMed  Google Scholar 

  12. Ottani V, Martini D, Franchi M, Ruggeri A, Raspanti M (2002) Hierarchical structures in fibrillar collagens. Micron 33:587–596. https://doi.org/10.1016/S0968-4328(02)00033-1

    Article  CAS  PubMed  Google Scholar 

  13. Han L, Grodzinsky AJ, Ortiz C (2011) Nanomechanics of the cartilage extracellular matrix. Annu Rev Mater Res 41:133–168. https://doi.org/10.1146/annurev-matsci-062910-100431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jobling R, D'Souza R, Baker N, Lara-Corrales I, Mendoza-Londono R, Dupuis L, Savarirayan R, Ala-Kokko L, Kannu P (2014) The collagenopathies: review of clinical phenotypes and molecular correlations. Curr Rheumatol Rep 16:394. https://doi.org/10.1007/S11926-013-0394-3

    Article  PubMed  Google Scholar 

  15. DiChiara AS, Taylor RJ, Wong MY, Doan N-D, Del Rosario AM, Shoulders MD (2016) Mapping and exploring the collagen-I proteostasis network. ACS Chem Biol 11:1408–1421. https://doi.org/10.1021/acschembio.5b01083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuttner V, Mack C, Gretzmeier C, Bruckner-Tuderman L, Dengjel J (2014) Loss of collagen VII is associated with reduced transglutaminase 2 abundance and activity. J Invest Dermatol 134:2381–2389. https://doi.org/10.1038/jid.2014.185

    Article  CAS  PubMed  Google Scholar 

  17. Campeau E, Ruhl VE, Rodier F, Smith CL, Rahmberg BL, Fuss JO, Campisi J, Yaswen P, Cooper PK, Kaufmann PD (2009) A versatile viral system for expression and depletion of proteins in mammalian cells. PLoS One 4:e0006529. https://doi.org/10.1371/journal.pone.0006529

    Article  CAS  Google Scholar 

  18. Bressan RB, Dewari PS, Kalantzaki M, Gangoso E, Matjusaitis M, Garcia-Diaz C, Blin C, Grant V, Bulstrode H, Gogolok S, Skarnes WC, Pollard SM (2017) Efficient CRISPR/Cas9-assisted gene targeting enables rapid and precise genetic manipulation of mammalian neural stem cells. Development 144:635–648. https://doi.org/10.1242/dev.140855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Savic D, Partridge EC, Newberry KM, Smith SB, Meadows SK, Roberts BS, Mackiewicz M, Mendenhall EM, Myers RM (2015) CETCh-seq: CRISPR epitope tagging ChIP-seq of DNA-binding proteins. Genome Res 25:1581–1589. https://doi.org/10.1101/gr.193540.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wong MY, Doan N-D, DiChiara AS, Papa LJ 3rd, Cheah JH, Soule CK, Watson N, Hulleman JD, Shoulders MD (2018) A high-throughput assay for collagen secretion suggests an unanticipated role for Hsp90 in collagen production. Biochemistry 57:2814–2827. https://doi.org/10.1021/acs.biochem.8b00378

    Article  CAS  PubMed  Google Scholar 

  21. Perkins DN, Pappin DJC, Creasy DM, Cottrell JS (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567. https://doi.org/10.1002/(Sici)1522-2683(19991201)20:18<3551::Aid-Elps3551>3.0.Co;2-2

    Article  CAS  PubMed  Google Scholar 

  22. Kim KM, Yi EC, Kim Y (2012) Mapping protein receptor-ligand interactions via in vivo chemical crosslinking, affinity purification, and differential mass spectrometry. Methods 56:161–165. https://doi.org/10.1016/j.ymeth.2011.10.013

    Article  CAS  PubMed  Google Scholar 

  23. Corgiat BA, Nordman JC, Kabbani N (2014) Chemical crosslinkers enhance detection of receptor interactomes. Front Pharmacol 4:171. https://doi.org/10.3389/fphar.2013.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leitner A (2016) Cross-linking and other structural proteomics techniques: how chemistry is enabling mass spectrometry applications in structural biology. Chem Sci 7:4792–4803. https://doi.org/10.1039/c5sc04196a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Holding AN (2015) XL-MS: protein cross-linking coupled with mass spectrometry. Methods 89:54–63. https://doi.org/10.1016/j.ymeth.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  26. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75:1895–1904. https://doi.org/10.1021/ac0262560

    Article  CAS  PubMed  Google Scholar 

  27. Unwin RD, Pierce A, Watson RB, Sternberg DW, Whetton AD (2005) Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol Cell Proteomics 4:924–935. https://doi.org/10.1074/mcp.M400193-MCP200

    Article  CAS  PubMed  Google Scholar 

  28. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1:376–386. https://doi.org/10.1074/mcp.M200025-MCP200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Joseph Genereux (University of California—Riverside) for technical advice. This work was supported by NIH/NIAMS Grants R03AR067503 and R01AR071443 (to M.D.S.). N.-D.D. was supported by Fonds de Recherche du Québec – Santé (FRQS) and Canadian Institutes of Health Research postdoctoral fellowships. A.S.D. was supported by a NIH Ruth L. Kirschstein predoctoral fellowship (F31AR067615). This work was also supported in part by the NIH/NIEHS under award P30-ES002109 and by a Cancer Center Support (core) Grant P30-CA14051 from the NIH/NCI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Shoulders .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Doan, ND., DiChiara, A.S., Del Rosario, A.M., Schiavoni, R.P., Shoulders, M.D. (2019). Mass Spectrometry-Based Proteomics to Define Intracellular Collagen Interactomes. In: Sagi, I., Afratis, N. (eds) Collagen. Methods in Molecular Biology, vol 1944. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9095-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9095-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9094-8

  • Online ISBN: 978-1-4939-9095-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics