Skip to main content

A Drug-Inducible Transgenic Zebrafish Model for Myelinating Glial Cell Ablation

  • Protocol
  • First Online:
Oligodendrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1936))

Abstract

To study cellular and molecular mechanisms of demyelination and remyelination in vivo, we developed a transgenic zebrafish line, Tg(mbp:mCherry-NTR), in which expression of the bacterial enzyme nitroreductase (NTR) is driven under the myelin basic protein promoter (mbp) and thus is expressed in myelinating glia. When NTR-expressing larvae are treated with the prodrug metronidazole, the reaction between NTR and Mtz results in a toxic metabolite which selectively kills NTR-expressing cells. Using the Tg(mbp:mCherry-NTR) line, we can ablate two-thirds of oligodendrocytes following a 2-day MTZ treatment. Demyelination is evident seven days later, and remyelination is observed 16 days after Mtz treatment. The Tg(mbp:mCherry-NTR) model can be used to image cell behavior during, and to test how genetic manipulations or chemical compounds regulate, demyelination and remyelination. In this chapter, we describe the methods we used to characterize the oligodendrocyte loss, demyelination and remyelination in the Tg(mbp:mCherry-NTR) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nave K-A, Werner HB (2014) Myelination of the nervous system: mechanisms and functions. Annu Rev Cell Dev Biol 30:503–533. https://doi.org/10.1146/annurev-cellbio-100913-013101

    Article  CAS  PubMed  Google Scholar 

  2. Boespflug-Tanguy O, Labauge P, Fogli A, Vaurs-Barriere C (2008) Genes involved in leukodystrophies: a glance at glial functions. Curr Neurol Neurosci Rep 8:217–229

    Article  CAS  PubMed  Google Scholar 

  3. Pacey LKK, Xuan ICY, Guan S et al (2013) Delayed myelination in a mouse model of fragile X syndrome. Hum Mol Genet 22:3920–3930. https://doi.org/10.1093/hmg/ddt246

    Article  CAS  PubMed  Google Scholar 

  4. Hercher C, Chopra V, Beasley CL (2014) Evidence for morphological alterations in prefrontal white matter glia in schizophrenia and bipolar disorder. J Psychiatry Neurosci 39:376–385

    Article  PubMed  PubMed Central  Google Scholar 

  5. Windrem MS, Osipovitch M, Liu Z et al (2017) Human iPSC glial mouse chimeras reveal glial contributions to schizophrenia. Cell Stem Cell 21:195–208.e6. https://doi.org/10.1016/j.stem.2017.06.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kang SH, Li Y, Fukaya M et al (2013) Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 16:571–579. https://doi.org/10.1038/nn.3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thompson AJ, Baranzini SE, Geurts J et al (2018) Multiple sclerosis. Lancet 391:1622–1636. https://doi.org/10.1016/S0140-6736(18)30481-1

    Article  PubMed  Google Scholar 

  8. Franklin RJM, Ffrench-Constant C (2017) Regenerating CNS myelin—from mechanisms to experimental medicines. Nat Rev Neurosci 18:753–769. https://doi.org/10.1038/nrn.2017.136

    Article  CAS  PubMed  Google Scholar 

  9. Kornek B, Storch MK, Weissert R et al (2010) Multiple sclerosis and chronic autoimmune encephalomyelitis. Am J Pathol 157:267–276. https://doi.org/10.1016/S0002-9440(10)64537-3

    Article  Google Scholar 

  10. Patrikios P, Stadelmann C, Kutzelnigg A et al (2006) Remyelination is extensive in a subset of multiple sclerosis patients. Brain 129:3165–3172. https://doi.org/10.1093/brain/awl217

    Article  PubMed  Google Scholar 

  11. Smith KJ, Blakemore WF, McDonald WI (1981) The restoration of conduction by central remyelination. Brain 104:383–404

    Article  CAS  PubMed  Google Scholar 

  12. Jeffery ND, Blakemore WF (1997) Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination. Brain 120:27–37. https://doi.org/10.1093/brain/120.1.27

    Article  PubMed  Google Scholar 

  13. Irvine KA, Blakemore WF (2008) Remyelination protects axons from demyelination-associated axon degeneration. Brain 131:1464–1477. https://doi.org/10.1093/brain/awn080

    Article  CAS  PubMed  Google Scholar 

  14. Mei F, Lehmann-Horn K, Shen Y-AA et al (2016) Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. Elife 5:e18246. https://doi.org/10.7554/eLife.18246

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cole KLH, Early JJ, Lyons DA (2017) Drug discovery for remyelination and treatment of MS. Glia 65:1565–1589. https://doi.org/10.1002/glia.23166

    Article  PubMed  Google Scholar 

  16. Traka M, Arasi K, Avila RL et al (2010) A genetic mouse model of adult-onset, pervasive central nervous system demyelination with robust remyelination. Brain 133:3017–3029. https://doi.org/10.1093/brain/awq247

    Article  PubMed  PubMed Central  Google Scholar 

  17. Traka M, Podojil JR, McCarthy DP et al (2015) Oligodendrocyte death results in immune-mediated CNS demyelination. Nat Neurosci 19:65–74. https://doi.org/10.1038/nn.4193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pohl HBF, Porcheri C, Mueggler T et al (2011) Genetically induced adult oligodendrocyte cell death is associated with poor myelin clearance, reduced remyelination, and axonal damage. J Neurosci 31:1069–1080. https://doi.org/10.1523/JNEUROSCI.5035-10.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Locatelli G, Wörtge S, Buch T et al (2012) Primary oligodendrocyte death does not elicit anti-CNS immunity. Nat Neurosci 15:543–550. https://doi.org/10.1038/nn.3062

    Article  CAS  PubMed  Google Scholar 

  20. Kaya F, Mannioui A, Chesneau A et al (2012) Live imaging of targeted cell ablation in Xenopus: a new model to study demyelination and repair. J Neurosci 32:12885–12895. https://doi.org/10.1523/JNEUROSCI.2252-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida RG, Czopka T, ffrench-Constant C, Lyons DA (2011) Individual axons regulate the myelinating potential of single oligodendrocytes in vivo. Development 138:4443–4450. https://doi.org/10.1242/dev.071001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. MacRae CA, Peterson RT (2015) Zebrafish as tools for drug discovery. Nat Rev Drug Discov 14:721–731. https://doi.org/10.1038/nrd4627

    Article  CAS  PubMed  Google Scholar 

  23. Early JJ, Cole KL, Williamson JM et al (2018) An automated high-resolution in vivo screen in zebrafish to identify chemical regulators of myelination. Elife 7:4443. https://doi.org/10.7554/eLife.35136

    Article  Google Scholar 

  24. Pisharath H, Parsons MJ (2009) Nitroreductase-mediated cell ablation in transgenic zebrafish embryos. Methods Mol Biol (Clifton, NJ) 546:133–143. https://doi.org/10.1007/978-1-60327-977-2_9

    Article  CAS  Google Scholar 

  25. Curado S, Anderson RM, Jungblut B et al (2007) Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn 236:1025–1035. https://doi.org/10.1002/dvdy.21100

    Article  CAS  PubMed  Google Scholar 

  26. Karttunen MJ, Czopka T, Goedhart M et al (2017) Regeneration of myelin sheaths of normal length and thickness in the zebrafish CNS correlates with growth of axons in caliber. PLoS One 12:e0178058. https://doi.org/10.1371/journal.pone.0178058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Lyons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Karttunen, M.J., Lyons, D.A. (2019). A Drug-Inducible Transgenic Zebrafish Model for Myelinating Glial Cell Ablation. In: Lyons, D., Kegel, L. (eds) Oligodendrocytes. Methods in Molecular Biology, vol 1936. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9072-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9072-6_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9070-2

  • Online ISBN: 978-1-4939-9072-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics