Skip to main content

RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq)

  • Protocol
  • First Online:
Vertebrate Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1920))

Abstract

Embryonic development is heavily dependent on temporally and spatially restricted gene expression. Spatially resolved measurements of gene expression are therefore crucial for identifying novel regulators and the understanding of their function. However, in situ methods do not resolve global gene expression, and sequencing-based methods usually do not provide spatial information. Here, we describe tomo-seq, a method that combines classical histological sectioning of embryos or tissues with a highly sensitive RNA-sequencing technique. Application of tomo-seq to zebrafish embryos allows reconstructing the spatial gene expression of thousands of genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thisse C, Thisse B (2008) High-resolution in situ hybridization to whole-mount zebrafish embryos. Nat Protoc 3:59–69. https://doi.org/10.1038/nprot.2007.514

    Article  CAS  PubMed  Google Scholar 

  2. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090. https://doi.org/10.1126/science.aaa6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coskun AF, Cai L (2016) Dense transcript profiling in single cells by image correlation decoding. Nat Methods 13:6–11. https://doi.org/10.1038/nmeth.3895

    Article  CAS  Google Scholar 

  4. Karaiskos N, Wahle P, Alles J, Boltengagen A, Ayoub S, Kipar C et al (2017) The Drosophila embryo at single-cell transcriptome resolution. Science 3235:eaan3235. https://doi.org/10.1126/science.aan3235

    Article  CAS  Google Scholar 

  5. Satija R, Farrell JA, Gennert D, Schier AF, Regev A (2015) Spatial reconstruction of single-cell gene expression data. Nat Biotechnol 33:495–502. https://doi.org/10.1038/nbt.3192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Achim K, Pettit J-B, Saraiva LR, Gavriouchkina D, Larsson T, Arendt D et al (2015) High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin. Nat Biotechnol 33:503–509. https://doi.org/10.1038/nbt.3209

    Article  CAS  PubMed  Google Scholar 

  7. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J et al (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82. https://doi.org/10.1126/science.aaf2403

    Article  CAS  PubMed  Google Scholar 

  8. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y, Anavy L et al (2016) CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol 17:77. https://doi.org/10.1186/s13059-016-0938-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hashimshony T, Wagner F, Sher N, Yanai I (2012) CEL-seq: single-cell RNA-seq by multiplexed linear amplification. Cell Rep 2:666–673. https://doi.org/10.1016/j.celrep.2012.08.003

    Article  CAS  PubMed  Google Scholar 

  10. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M et al (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166. https://doi.org/10.1038/nmeth.2772

    Article  CAS  PubMed  Google Scholar 

  11. Junker JP, Noël ES, Guryev V, Peterson KA, Shah G, Huisken J et al (2014) Genome-wide RNA tomography in the zebrafish embryo. Cell 159:662–675. https://doi.org/10.1016/j.cell.2014.09.038

    Article  CAS  PubMed  Google Scholar 

  12. Lacraz GPA, Junker JP, Gladka MM, Molenaar B, Scholman KT, Vigil-Garcia M et al (2017) Tomo-seq identifies SOX9 as a key regulator of cardiac fibrosis during ischemic injury. Circulation 136(15):1396–1409

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Philipp Junker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holler, K., Junker, J.P. (2019). RNA Tomography for Spatially Resolved Transcriptomics (Tomo-Seq). In: Pelegri, F. (eds) Vertebrate Embryogenesis. Methods in Molecular Biology, vol 1920. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9009-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9009-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9008-5

  • Online ISBN: 978-1-4939-9009-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics