Skip to main content

Overcoming Challenges of Hepatitis C Virus Envelope Glycoprotein Production in Mammalian Cells

  • Protocol
  • First Online:
Hepatitis C Virus Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1911))

Abstract

Posttranslational modifications (PTMs) are often required for proper folding and physiological function of proteins, including the envelope glycoproteins 1 and 2 (E1 and E2) of hepatitis C virus (HCV). Commonly used expression systems such as bacteria, yeast, and baculovirus produce soluble HCV E1 and E2 at very low yields, as the cellular environment and molecular machinery necessary for PTMs may be suboptimal or missing. Here, we describe an expression system for HCV E2 ectodomain (eE2) with 11 N-linked glycans and eight disulfide bonds, which combines lentivirus transduction of mammalian cells and a continuous growth, adherent cell bioreactor. It is environmentally friendly, as well as cost- and time-efficient compared to other methods of recombinant protein expression in mammalian systems with final yields of eE2 approaching 60 mg/L of cell culture supernatant. eE2 produced by this system is amenable to a variety of biophysical studies, including structural determination by X-ray crystallography. Considering the ease of use and flexibility, this method can be applied to express an array of difficult target proteins in a variety of mammalian cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan M, Kohne C, Wurm FM (1998) Calcium-phosphate mediated DNA transfer into HEK-293 cells in suspension: control of physiological parameters allows transfection in stirred media. Cytotechnology 26:29–47

    Article  Google Scholar 

  2. Schlaeger EJ, Christensen K (1999) Transient gene expression in mammalian cells grown in serum-free suspension culture. Cytotechnology 30:71–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  PubMed  Google Scholar 

  4. Chaudhary S, Pak JE, Gruswitz F, Sharma V, Stroud RM (2012) Overexpressing human membrane proteins in stably transfected and clonal human embryonic kidney 293S cells. Nat Protoc 7:453–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Khan AG et al (2014) Structure of the core ectodomain of the hepatitis C virus envelope glycoprotein 2. Nature 509:381–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Naldini L et al (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 5259:263–267

    Article  Google Scholar 

  7. Wang IK et al (2006) A novel control scheme for inducing angiostatin-human IgG fusion protein production using recombinant CHO cells in a oscillating bioreactor. J Biotechnol 121:418–428

    Article  CAS  PubMed  Google Scholar 

  8. Zufferey R et al (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol 72:9873–9880

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Dull T et al (1998) A third-generation lentivirus vector with a conditional packaging system. J Virol 72:8463–8471

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Zufferey R, Donello JE, Trono D, Hope TJ (1999) Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol 73:2886–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Mancia F et al (2004) Optimization of protein production in mammalian cells with a coexpressed fluorescent marker. Structure 12:1355–1360

    Article  CAS  PubMed  Google Scholar 

  12. Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605

    CAS  PubMed  Google Scholar 

  13. Chang VT et al (2007) Glycoprotein structural genomics: solving the glycosylation problem. Structure 15:267–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. North SJ et al (2010) Glycomics profiling of Chinese hamster ovary cell glycosylation mutants reveals N-glycans of a novel size and complexity. J Biol Chem 285:5759–5775

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Marcotrigiano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yost, S.A., Whidby, J., Khan, A.G., Wang, Y., Marcotrigiano, J. (2019). Overcoming Challenges of Hepatitis C Virus Envelope Glycoprotein Production in Mammalian Cells. In: Law, M. (eds) Hepatitis C Virus Protocols . Methods in Molecular Biology, vol 1911. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8976-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8976-8_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8975-1

  • Online ISBN: 978-1-4939-8976-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics