Skip to main content

Humanization and Simultaneous Optimization of Monoclonal Antibody

  • Protocol
  • First Online:
Human Monoclonal Antibodies

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1904))

Abstract

Antibody humanization is an essential technology for reducing the potential risk of immunogenicity associated with animal-derived antibodies and has been applied to a majority of the therapeutic antibodies on the market. For developing an antibody molecule as a pharmaceutical at the current biotechnology level, however, other properties also have to be considered in parallel with humanization in antibody generation and optimization. This section describes the critical properties of therapeutic antibodies that should be sufficiently qualified, including immunogenicity, binding affinity, physicochemical stability, expression in host cells and pharmacokinetics, and the basic methodologies of antibody engineering involved. By simultaneously optimizing the antibody molecule in light of these properties, it should prove possible to shorten the research and development period necessary to identify a highly qualified clinical candidate and consequently accelerate the start of the clinical trial.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nishimoto N, Kishimoto T (2008) Humanized antihuman IL-6 receptor antibody, tocilizumab. Handb Exp Pharmacol 181:151–160

    Article  CAS  Google Scholar 

  2. Buch MH, Emery P (2011) New therapies in the management of rheumatoid arthritis. Curr Opin Rheumatol 23:245–251

    Article  CAS  Google Scholar 

  3. Tanaka T, Kishimoto T (2012) Immunotherapeutic implication of IL-6 blockade. Immunotherapy 4:87–105

    Article  CAS  Google Scholar 

  4. Breedveld F (2011) The value of early intervention in RA-a window of opportunity. Clin Rheumatol 33:33–39

    Article  Google Scholar 

  5. Pangalis GA et al (2001) Campath-1H (anti-CD52) monoclonal antibody therapy in lymphoproliferative disorders. Med Oncol 18:99–107

    Article  CAS  Google Scholar 

  6. Weiner GJ (2010) Rituximab: mechanism of action. Semin Hematol 47:115–123

    Article  CAS  Google Scholar 

  7. Schroff RW et al (1985) Human anti-murine immunoglobulin responses in patients receiving monoclonal antibody therapy. Cancer Res 45:879–885

    CAS  PubMed  Google Scholar 

  8. Shawler DL et al (1985) Human immune response to multiple injections of murine monoclonal IgG. J Immunol 135:1530–1535

    CAS  PubMed  Google Scholar 

  9. Boulianne GL, Hozumi N, Shulman MJ (1984) Production of functional chimaeric mouse/human antibody. Nature 312:643–646

    Article  CAS  Google Scholar 

  10. Hwang WY, Foote J (2005) Immunogenicity of engineered antibodies. Methods 36:3–10

    Article  CAS  Google Scholar 

  11. Jones PT et al (1986) Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321:522–525

    Article  CAS  Google Scholar 

  12. Almagro JC, Fransson J (2008) Humanization of antibodies. Front Biosci 13:1619–1633

    CAS  PubMed  Google Scholar 

  13. Wu H, Dall’Acqua WF (2005) Humanized antibodies and their applications. Methods 36:1–2

    Article  CAS  Google Scholar 

  14. Tan P et al (2002) “Superhumanized” antibodies: reduction of immunogenic potential by complementarity-determining region grafting with human germline sequences: application to an anti-CD28. J Immunol 169:1119–1125

    Article  CAS  Google Scholar 

  15. Hwang WY et al (2005) Use of human germline genes in a CDR homology-based approach to antibody humanization. Methods 36:35–42

    Article  CAS  Google Scholar 

  16. Pelat T et al (2008) Germline humanization of a non-human primate antibody that neutralizes the anthrax toxin, by in vitro and in silico engineering. J Mol Biol 384:1400–1407

    Article  CAS  Google Scholar 

  17. Tamura M et al (2000) Structural correlates of an anticarcinoma antibody: identification of specificity-determining residues (SDRs) and development of a minimally immunogenic antibody variant by retention of SDRs only. J Immunol 164:1432–1441

    Article  CAS  Google Scholar 

  18. Gonzales NR et al (2004) SDR grafting of a murine antibody using multiple human germline templates to minimize its immunogenicity. Mol Immunol 1:863–872

    Article  Google Scholar 

  19. Kashmiri SV et al (2005) SDR grafting—a new approach to antibody humanization. Methods 36:25–34

    Article  CAS  Google Scholar 

  20. Maloney DG (2012) Anti-CD20 antibody therapy for B-cell lymphomas. N Engl J Med 366:2008–2016

    Article  CAS  Google Scholar 

  21. Ducancel F, Muller BH (2012) Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs 4:445–457

    Article  Google Scholar 

  22. Igawa T et al (2011) Engineering the variable region of therapeutic IgG antibodies. MAbs 3:243–252

    Article  Google Scholar 

  23. Strohl WR (2009) Optimization of Fc-mediated effector functions of monoclonal antibodies. Curr Opin Biotechnol 20:685–691

    Article  CAS  Google Scholar 

  24. Greer J (1991) Comparative modeling of homologous proteins. Methods Enzymol 202:239–252

    Article  CAS  Google Scholar 

  25. Morea V, Lesk AM, Tramontano A (2000) Antibody modeling: implications for engineering and design. Methods 20:267–279

    Article  CAS  Google Scholar 

  26. Whitelegg NR, Rees AR (2000) WAM: an improved algorithm for modelling antibodies on the WEB. Protein Eng Des Sel 13:819–824

    Article  CAS  Google Scholar 

  27. Marcatili P, Rosi A, Tramontano A (2008) PIGS: automatic prediction of antibody structures. Bioinformatics 24:1953–1954

    Article  CAS  Google Scholar 

  28. Sircar A, Kim ET, Gray JJ (2009) RosettaAntibody: antibody variable region homology modeling server. Nucleic Acids Res 37:474–479

    Article  Google Scholar 

  29. Almagro JC et al (2011) Antibody modeling assessment. Proteins 79:3050–3066

    Article  CAS  Google Scholar 

  30. Ewert S, Honegger A, Plückthun A (2004) Stability improvement of antibodies for extracellular and intracellular applications: CDR grafting to stable frameworks and structure-based framework engineering. Methods 34:184–199

    Article  CAS  Google Scholar 

  31. Ewert S et al (2003) Biophysical properties of human antibody variable domains. J Mol Biol 325:531–553

    Article  CAS  Google Scholar 

  32. Honegger A, Plückthun A (2001) The influence of the buried glutamine or glutamate residue in position 6 on the structure of immunoglobulin variable domains. J Mol Biol 309:687–699

    Article  CAS  Google Scholar 

  33. Jung S et al (2001) The importance of framework residues H6, H7 and H10 in antibody heavy chains: experimental evidence for a new structural subclassification of antibody V(H) domains. J Mol Biol 9:701–716

    Article  Google Scholar 

  34. Honegger A et al (2009) The influence of the framework core residues on the biophysical properties of immunoglobulin heavy chain variable domains. Protein Eng Des Sel 22:121–134

    Article  CAS  Google Scholar 

  35. Igawa T et al (2010) Reduced elimination of IgG antibodies by engineering the variable region. Protein Eng Des Sel 23:385–392

    Article  CAS  Google Scholar 

  36. Glanville J et al (2009) Precise determination of the diversity of a combinatorial antibody library gives insight into the human immunoglobulin repertoire. Proc Natl Acad Sci U S A 106:20216–20221

    Article  CAS  Google Scholar 

  37. Van WI et al (2007) Immunogenicity screening in protein drug development. Expert Opin Biol Ther 7:405–418

    Article  Google Scholar 

  38. Perry LC, Jones TD, Baker MP (2008) New approaches to prediction of immune responses to therapeutic proteins during preclinical development. Drugs R D 9:385–396

    Article  CAS  Google Scholar 

  39. Bryson CJ, Jones TD, Baker MP (2010) Prediction of immunogenicity of therapeutic proteins: validity of computational tools. BioDrugs 24:1–8

    Article  CAS  Google Scholar 

  40. Koren E et al (2007) Clinical validation of the “in silico” prediction of immunogenicity of a human recombinant therapeutic protein. Clin Immunol 124:26–32

    Article  CAS  Google Scholar 

  41. De Groot AS, McMurry J, Moise L (2008) Prediction of immunogenicity: in silico paradigms, ex vivo and in vivo correlates. Curr Opin Pharmacol 8:620–626

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Kuramochi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuramochi, T., Igawa, T., Tsunoda, H., Hattori, K. (2019). Humanization and Simultaneous Optimization of Monoclonal Antibody. In: Steinitz, M. (eds) Human Monoclonal Antibodies. Methods in Molecular Biology, vol 1904. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8958-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8958-4_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8957-7

  • Online ISBN: 978-1-4939-8958-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics