Skip to main content

Creating Targeted Gene Knockouts in Barley Using CRISPR/Cas9

  • Protocol
  • First Online:
Barley

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1900))

Abstract

Knockout mutants are an invaluable reverse genetics tool which have not been well developed in crop species compared to models like Arabidopsis. However, the emergence of CRISPR/Cas9 has changed this situation making the generation of such mutants accessible to many crops including barley. A single T-DNA construct can be transformed into barley immature embryos and stable transgenic lines regenerated through tissue culture which contain targeted mutations. Mutations are detected in T0 plants and go on in subsequent T1 and T2 generations to segregate from T-DNA, leaving lines which are non-transgenic and carrying a variety of mutations at the target locus. These mutations can be targeted to a particular gene of interest in order to bring about a loss of function creating a knockout mutant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feng Z, Zhang B, Ding W, Liu X, Yang DL, Wei P, Zhu J-K (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Res 23(10):1229–1232

    Article  CAS  Google Scholar 

  2. Li JF, Aach J, Norville JE, McCormack M, Zhang D, Bush J, Sheen J (2013) Multiplex and homologous recombination-mediated plant genome editing via guide RNA/Cas9. Nat Biotechnol 31(8):688–691

    Article  CAS  Google Scholar 

  3. Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    Article  Google Scholar 

  4. Shan Q, Wang Y, Li J, Zhang Y (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  Google Scholar 

  5. Lawrenson T, Shorinola O, Stacey N, Li C, Østergaard L, Patron N, Harwood W (2015) Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease. Genome Biol 16:258

    Article  Google Scholar 

  6. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  Google Scholar 

  7. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  Google Scholar 

  8. Harwood WA (2014) A protocol for high-throughput Agrobacterium-mediated barley transformation. Methods Mol Biol 1099:251–260

    Article  CAS  Google Scholar 

  9. Haeussler M, Schonig K, Eckert H, Eschstruth A, Mianne J, Renaud JB, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, Joly JS, Concordet JP (2016) Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol 17:148

    Article  Google Scholar 

  10. Doench JG, Fusi N, Sullender M, Hedge M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016) Optimized sgRNA design to maximise activity and minimise off-target effects of CRISPR-Cas9. Nat Biotechnol 34:184–191

    Article  CAS  Google Scholar 

  11. Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using clustered regularly interspersed short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166:1292–1297

    Article  Google Scholar 

  12. Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2014) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Biotechnology and Biological Sciences Research Council (BBSRC) via grant [BB/N019466/1] and grant [BB/P013511/1] to the John Innes Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Lawrenson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lawrenson, T., Harwood, W.A. (2019). Creating Targeted Gene Knockouts in Barley Using CRISPR/Cas9. In: Harwood, W. (eds) Barley. Methods in Molecular Biology, vol 1900. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8944-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8944-7_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8942-3

  • Online ISBN: 978-1-4939-8944-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics