Skip to main content

Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1898))

Abstract

We describe a recombineering-based method for the genetic manipulation of lytically replicating bacteriophages, focusing on mycobacteriophages. The approach utilizes recombineering-proficient strains of Mycobacterium smegmatis and employs a cotransformation strategy with purified phage genomic DNA and a mutagenic substrate, which selects for only those cells that are competent to take up DNA. The cotransformation method, combined with the high rates of recombination obtained in M. smegmatis recombineering strains, allows for the efficient and rapid generation of bacteriophage mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hatfull GF, Hendrix RW (2011) Bacteriophages and their genomes. Curr Opin Virol 1:298–303

    Article  CAS  Google Scholar 

  2. Katsura I (1976) Isolation of lambda prophage mutants defective in structural genes: their use for the study of bacteriophage morphogenesis. Mol Gen Genet MGG 148:31

    Article  CAS  Google Scholar 

  3. Katsura I, Hendrix RW (1984) Length determination in bacteriophage lambda tails. Cell 39:691

    Article  CAS  Google Scholar 

  4. Selick HE, Kreuzer KN, Alberts BM (1988) The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. J Biol Chem 263:11336

    CAS  PubMed  Google Scholar 

  5. Struthers-Schlinke JS, Robins WP, Kemp P, Molineux IJ (2000) The internal head protein Gp16 controls DNA ejection from the bacteriophage T7 virion. J Mol Biol 301:35

    Article  CAS  Google Scholar 

  6. Moak M, Molineux IJ (2000) Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol 37:345

    Article  CAS  Google Scholar 

  7. Oppenheim AB, Rattray AJ, Bubunenko M, Thomason LC, Court DL (2004) In vivo recombineering of bacteriophage lambda by PCR fragments and single-strand oligonucleotides. Virology 319:185

    Article  CAS  Google Scholar 

  8. Murray NE (2006) The impact of phage lambda: from restriction to recombineering. Biochem Soc Trans 34:203

    Article  CAS  Google Scholar 

  9. Piuri M, Hatfull GF (2006) A peptidoglycan hydrolase motif within the mycobacteriophage TM4 tape measure protein promotes efficient infection of stationary phase cells. Mol Microbiol 62:1569

    Article  CAS  Google Scholar 

  10. Martel B, Moineau S (2014) CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res 42:9504

    Article  CAS  Google Scholar 

  11. van Kessel JC, Hatfull GF (2007) Recombineering in Mycobacterium tuberculosis. Nat Methods 4:147

    Article  Google Scholar 

  12. van Kessel JC, Hatfull GF (2008) Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol 67:1094

    Article  Google Scholar 

  13. van Kessel JC, Hatfull GF (2008) Mycobacterial recombineering. Methods Mol Biol 435:203

    Article  Google Scholar 

  14. van Kessel JC, Marinelli LJ, Hatfull GF (2008) Recombineering mycobacteria and their phages. Nat Rev Microbiol 6:851

    Article  Google Scholar 

  15. Court DL, Sawitzke JA, Thomason LC (2002) Genetic engineering using homologous recombination. Annu Rev Genet 36:361

    Article  CAS  Google Scholar 

  16. Little JW (1967) An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J Biol Chem 242:679

    CAS  PubMed  Google Scholar 

  17. Joseph JW, Kolodner R (1983) Exonuclease VIII of Escherichia coli. II. Mechanism of action. J Biol Chem 258:10418

    CAS  PubMed  Google Scholar 

  18. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640

    Article  CAS  Google Scholar 

  19. Yu D et al (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97:5978

    Article  CAS  Google Scholar 

  20. Hall SD, Kolodner RD (1994) Homologous pairing and strand exchange promoted by the Escherichia coli RecT protein. Proc Natl Acad Sci U S A 91:3205

    Article  CAS  Google Scholar 

  21. Kolodner R, Hall SD, Luisi-DeLuca C (1994) Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol Microbiol 11:23

    Article  CAS  Google Scholar 

  22. Noirot P, Kolodner RD (1998) DNA strand invasion promoted by Escherichia coli RecT protein. J Biol Chem 273:12274

    Article  CAS  Google Scholar 

  23. Li Z, Karakousis G, Chiu SK, Reddy G, Radding CM (1998) The beta protein of phage lambda promotes strand exchange. J Mol Biol 276:733

    Article  CAS  Google Scholar 

  24. Rybalchenko N, Golub EI, Bi B, Radding CM (2004) Strand invasion promoted by recombination protein beta of coliphage lambda. Proc Natl Acad Sci U S A 101:17056

    Article  CAS  Google Scholar 

  25. Murphy KC (1998) Use of bacteriophage lambda recombination functions to promote gene replacement in Escherichia coli. J Bacteriol 180:2063

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang Y, Buchholz F, Muyrers JP, Stewart AF (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet 20:123

    Article  CAS  Google Scholar 

  27. Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27:1555

    Article  CAS  Google Scholar 

  28. Murphy KC, Campellone KG, Poteete AR (2000) PCR-mediated gene replacement in Escherichia coli. Gene 246:321

    Article  CAS  Google Scholar 

  29. Ellis HM, Yu D, DiTizio T, Court DL (2001) High efficiency mutagenesis, repair, and engineering of chromosomal DNA using single-stranded oligonucleotides. Proc Natl Acad Sci U S A 98:6742

    Article  CAS  Google Scholar 

  30. Lee EC et al (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56

    Article  CAS  Google Scholar 

  31. Muyrers JP, Zhang Y, Stewart AF (2001) Techniques: recombinogenic engineering—new options for cloning and manipulating DNA. Trends Biochem Sci 26:325

    Article  CAS  Google Scholar 

  32. Marinelli LJ et al (2008) BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One 3:e3957

    Article  Google Scholar 

  33. Marinelli LJ, Hatfull GF, Piuri M (2012) Recombineering: a powerful tool for modification of bacteriophage genomes. Bacteriophage 2:5

    Article  Google Scholar 

  34. Payne K, Sun Q, Sacchettini J, Hatfull GF (2009) Mycobacteriophage Lysin B is a novel mycolylarabinogalactan esterase. Mol Microbiol 73:367

    Article  CAS  Google Scholar 

  35. Catalao MJ, Gil F, Moniz-Pereira J, Pimentel M (2010) The mycobacteriophage Ms6 encodes a chaperone-like protein involved in the endolysin delivery to the peptidoglycan. Mol Microbiol 77:672

    Article  CAS  Google Scholar 

  36. Catalao MJ, Milho C, Gil F, Moniz-Pereira J, Pimentel M (2011) A second endolysin gene is fully embedded in-frame with the lysA gene of mycobacteriophage Ms6. PLoS One 6:e20515

    Article  CAS  Google Scholar 

  37. Catalao MJ, Gil F, Moniz-Pereira J, Pimentel M (2011) Functional analysis of the holin-like proteins of mycobacteriophage Ms6. J Bacteriol 193:2793

    Article  CAS  Google Scholar 

  38. Savinov A, Pan J, Ghosh P, Hatfull GF (2012) The Bxb1 gp47 recombination directionality factor is required not only for prophage excision, but also for phage DNA replication. Gene 495:42

    Article  CAS  Google Scholar 

  39. Jacobs-Sera D et al (2012) On the nature of mycobacteriophage diversity and host preference. Virology 434:187

    Article  CAS  Google Scholar 

  40. Dedrick RM et al (2013) Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol 88:577

    Article  CAS  Google Scholar 

  41. da Silva JL et al (2013) Application of BRED technology to construct recombinant D29 reporter phage expressing EGFP. FEMS Microbiol Lett 344:166

    Article  Google Scholar 

  42. Piuri M, Rondon L, Urdaniz E, Hatfull GF (2013) Generation of affinity-tagged fluoromycobacteriophages by mixed assembly of phage capsids. Appl Environ Microbiol 79:5608

    Article  CAS  Google Scholar 

  43. Feher T, Karcagi I, Blattner FR, Posfai G (2012) Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol 5:466

    Article  Google Scholar 

  44. Shin H, Lee JH, Yoon H, Kang DH, Ryu S (2014) Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl Environ Microbiol 80:374

    Article  CAS  Google Scholar 

  45. Swaminathan S et al (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29:14

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Rebekah Dedrick for generously providing a critical reading of the protocol and for helpful comments and discussions.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Marinelli, L.J., Piuri, M., Hatfull, G.F. (2019). Genetic Manipulation of Lytic Bacteriophages with BRED: Bacteriophage Recombineering of Electroporated DNA. In: Clokie, M., Kropinski, A., Lavigne, R. (eds) Bacteriophages. Methods in Molecular Biology, vol 1898. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8940-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8940-9_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8939-3

  • Online ISBN: 978-1-4939-8940-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics