Skip to main content

Investigation of Bacterial Curli Production and Adhesion Using AFM

  • Protocol
  • First Online:
Atomic Force Microscopy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1886))

Abstract

Escherichia coli cells containing the amyloid curli protein CsgA bind to abiotic surfaces and the extracellular matrix protein fibronectin. Here we describe procedures for following bacterial attachment to glass surfaces and provide protocols for coupling bacterial cells to AFM tips. Using single microbial cell force spectroscopy in physiological environment, we show methods to probe mechanical parameters and the dissociation of curliated E. coli cells from fibronectin surfaces by quantifying Young’s modulus, unbinding forces, and de-adhesion works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oh Yoo J, Cui Y, Kim H, Li Y, Hinterdorfer P, Park S (2012) Characterization of Curli A production on living bacterial surfaces by scanning probe microscopy. Biophys J 103(8):1666–1671. https://doi.org/10.1016/j.bpj.2012.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vadillo-Rodriguez V, Beveridge TJ, Dutcher JR (2008) Surface viscoelasticity of individual gram-negative bacterial cells measured using atomic force microscopy. J Bacteriol 190(12):4225–4232. https://doi.org/10.1128/jb.00132-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gebbink MF, Claessen D, Bouma B, Dijkhuizen L, Wosten HA (2005) Amyloids—a functional coat for microorganisms. Nat Rev Microbiol 3(4):333–341. https://doi.org/10.1038/nrmicro1127

    Article  CAS  PubMed  Google Scholar 

  4. Gophna U, Oelschlaeger TA, Hacker J, Ron EZ (2002) Role of fibronectin in curli-mediated internalization. FEMS Microbiol Lett 212(1):55–58

    Article  CAS  PubMed  Google Scholar 

  5. Engel A, Muller DJ (2000) Observing single biomolecules at work with the atomic force microscope. Nat Struct Biol 7(9):715–718. https://doi.org/10.1038/78929

    Article  CAS  PubMed  Google Scholar 

  6. Martinez-Martin D, Herruzo ET, Dietz C, Gomez-Herrero J, Garcia R (2011) Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys Rev Lett 106(19):198101. https://doi.org/10.1103/PhysRevLett.106.198101

    Article  CAS  PubMed  Google Scholar 

  7. Rico F, Su C, Scheuring S (2011) Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett 11(9):3983–3986. https://doi.org/10.1021/nl202351t

    Article  CAS  PubMed  Google Scholar 

  8. Dufrene YF (2015) Sticky microbes: forces in microbial cell adhesion. Trends Microbiol 23(6):376–382. https://doi.org/10.1016/j.tim.2015.01.011

    Article  CAS  PubMed  Google Scholar 

  9. Fantner GE, Barbero RJ, Gray DS, Belcher AM (2010) Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high speed AFM. Nat Nanotechnol 5(4):280–285. https://doi.org/10.1038/nnano.2010.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mortensen NP, Fowlkes JD, Sullivan CJ, Allison DP, Larsen NB, Molin S, Doktycz MJ (2009) Effects of colistin on surface ultrastructure and nanomechanics of Pseudomonas aeruginosa cells. Langmuir 25(6):3728–3733. https://doi.org/10.1021/la803898g

    Article  CAS  PubMed  Google Scholar 

  11. Sullan RM, Li JK, Crowley PJ, Brady LJ, Dufrene YF (2015) Binding forces of Streptococcus mutans P1 adhesin. ACS Nano 9(2):1448–1460. https://doi.org/10.1021/nn5058886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Doktycz MJ, Sullivan CJ, Hoyt PR, Pelletier DA, Wu S, Allison DP (2003) AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy 97(1–4):209–216. https://doi.org/10.1016/s0304-3991(03)00045-7

    Article  CAS  PubMed  Google Scholar 

  13. Beaussart A, Baker AE, Kuchma SL, El-Kirat-Chatel S, O’Toole GA, Dufrêne YF (2014) Nanoscale adhesion forces of Pseudomonas aeruginosa Type IV Pili. ACS Nano 8(10):10723–10733. https://doi.org/10.1021/nn5044383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oh YJ, Hubauer-Brenner M, Gruber HJ, Cui Y, Traxler L, Siligan C, Park S, Hinterdorfer P (2016) Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci Rep 6:33909. https://doi.org/10.1038/srep33909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chtcheglova LA, Waschke J, Wildling L, Drenckhahn D, Hinterdorfer P (2007) Nano-scale dynamic recognition imaging on vascular endothelial cells. Biophys J 93(2):L11–L13. https://doi.org/10.1529/biophysj.107.109751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stroh C, Wang H, Bash R, Ashcroft B, Nelson J, Gruber H, Lohr D, Lindsay SM, Hinterdorfer P (2004) Single-molecule recognition imaging microscopy. Proc Natl Acad Sci U S A 101(34):12503–12507. https://doi.org/10.1073/pnas.0403538101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Florin EL, Moy VT, Gaub HE (1994) Adhesion forces between individual ligand-receptor pairs. Science (New York, NY) 264(5157):415–417

    Article  CAS  Google Scholar 

  18. Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H (1996) Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A 93(8):3477–3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee GU, Chrisey LA, Colton RJ (1994) Direct measurement of the forces between complementary strands of DNA. Science (New York, NY) 266(5186):771–773

    Article  CAS  Google Scholar 

  20. Benoit M, Gabriel D, Gerisch G, Gaub HE (2000) Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat Cell Biol 2(6):313–317. https://doi.org/10.1038/35014000

    Article  CAS  PubMed  Google Scholar 

  21. Wildling L, Unterauer B, Zhu R, Rupprecht A, Haselgrübler T, Rankl C, Ebner A, Vater D, Pollheimer P, Pohl EE, Hinterdorfer P, Gruber HJ (2011) Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug Chem 22(6):1239–1248. https://doi.org/10.1021/bc200099t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ebner A, Wildling L, Gruber HJ (2018) Functionalization of AFM tips and supports for molecular recognition force spectroscopy and recognition imaging. Methods and Protocols, Atomic Force Microscopy, Methods Molecular Biology, Springer Nature vol. 1886

    Google Scholar 

  23. Puntheeranurak T, Neundlinger I, Kinne RKH, Hinterdorfer P (2011) Single-molecule recognition force spectroscopy of transmembrane transporters on living cells. Nat Protocols 6(9):1443–1452

    Article  CAS  PubMed  Google Scholar 

  24. Dintwa E, Tijskens E, Ramon H (2008) On the accuracy of the Hertz model to describe the normal contact of soft elastic spheres. Granul Matter 10(3):209–221. https://doi.org/10.1007/s10035-007-0078-7

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by an APART (Austrian Programme for Advanced Research and Technology) fellowship of the Austrian Academy of Science to Y.J.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoo Jin Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Oh, Y.J., Hinterdorfer, P. (2019). Investigation of Bacterial Curli Production and Adhesion Using AFM. In: Santos, N., Carvalho, F. (eds) Atomic Force Microscopy. Methods in Molecular Biology, vol 1886. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8894-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8894-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8893-8

  • Online ISBN: 978-1-4939-8894-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics