Skip to main content

Real-Time PCR Protocol for Phytoplasma Detection and Quantification

  • Protocol
  • First Online:
Phytoplasmas

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1875))

Abstract

Phytoplasmas are mollicutes restricted to plant phloem tissue and are normally present at very low concentrations. Real-time polymerase chain reaction (qPCR) offers several advantages over conventional PCR. It is a fast, sensitive, and reliable detection technique amenable to high throughput. Two fluorescent chemistries are available, intercalating dyes or hybridization probes. Intercalating dyes are relatively less expensive than TaqMan® hybridization probes but the latter chemistry is the most commonly used for phytoplasma detection. qPCR may be designed for universal detection of phytoplasma, group or subgroup specific detection, or for simultaneous detection of up to three or four phytoplasmas (multiplexing). qPCR may be used for relative or absolute quantification in host plants and in insect vectors. Therefore, qPCR plays an important role in phytoplasma detection as well as in host-pathogen interaction and in epidemiological studies. This chapter outlines the protocols followed in qPCR assay for phytoplasma detection and quantification, focusing mainly on the use of TaqMan® probes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao Y, Davis R (2016) Criteria for phytoplasma 16Sr group/subgroup delineation and the need of a platform for proper registration of new groups and subgroups. Int J Syst Evol Microbiol 66(5):2121–2123

    Article  CAS  Google Scholar 

  2. Contaldo N, Satta E, Zambon Y, Paltrinieri S, Bertaccini A (2017) Development and evaluation of different complex media for phytoplasma isolation and growth. J Microbiol Methods 127:105–110

    Article  Google Scholar 

  3. Bianco PA, Casati P, Marziliano N (2004) Detection of phytoplasmas associated with grapevine flavescence dorée disease using real-time PCR. J Plant Pathol 86:257–261

    CAS  Google Scholar 

  4. Christensen NM, Nicolaisen M, Hansen M, Schulz A (2004) Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging. Mol Plant-Microbe Interact 17:1175–1184

    Article  CAS  Google Scholar 

  5. Wei W, Kakizawa S, Suzuki S, Jung HY, Nishigawa H, Miyata S, Oshima K, Ugaki M, Hibi T, Namba S (2004) In planta dynamic analysis of onion yellows phytoplasma using localized inoculation by insect transmission. Phytopathology 94:244–250

    Article  Google Scholar 

  6. Dragan AI, Pavlovic R, McGivney JB, Casas-Finet JR, Bishop ES, Strouse RJ et al (2012) SYBR green I: fluorescence properties and interaction with DNA. J Fluoresc 4:1189–1199

    Article  Google Scholar 

  7. Anniballi F, Auricchio B, Delibato E, Antonacci M, De Medici D, Fenicia L (2012) Multiplex real-time PCR SYBR green for detection and typing of group III clostridium botulinum. Vet Microbiol 154(3–4):332

    Article  CAS  Google Scholar 

  8. Ito T, Suzaki K (2017) Universal detection of phytoplasmas and xylella spp. by TaqMan singleplex and multiplex real-time PCR with dual priming oligonucleotides. PLoS One 12(9):e0185427. https://doi.org/10.1371/journal.pone.0185427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baric S, Dalla-Via J (2004) A new approach to apple proliferation detection: a highly sensitive real-time PCR assay. J Microbiol Methods 57:135–145

    Article  CAS  Google Scholar 

  10. Kostina EV, Ryabinin VA, Maksakova GA, Sinyakov AN (2007) TaqMan probes based on oligonucleotide–hairpin minor groove binder conjugates. Russ J Bio Organichemistry 33:614–616

    Article  CAS  Google Scholar 

  11. Jawhari M, Abrahamian P, Abdel Sater A, Sobh H, Tawidian P, Abou-Jawdah Y (2015) Specific PCR and real-time PCR assays for detection and quantitation of ‘Candidatus Phytoplasma phoenicium’. Mol Cell Probes 29(1):63–70

    Article  CAS  Google Scholar 

  12. Rezadoost MH, Kordrostami M, Kumleh HH (2016) An efficient protocol for isolation of inhibitor-free nucleic acids even from recalcitrant plants. 3. Biotech 6:61

    Google Scholar 

  13. Marzachì C, Bosco D (2005) Relative quantification of chrysanthemum yellows (16Sr I) phytoplasma in its plant and insect host using real-time polymerase chain reaction. Mol Biotechnol 30:117–127

    Article  Google Scholar 

  14. Martini M, Loi N, Ermacora P, Carraro L, Pastore M (2007) A real-time PCR method for detection and quantification of ‘Candidatus Phytoplasma prunorum’ in its natural hosts. B Insectol 60(2):251–252

    Google Scholar 

  15. Hodgetts J, Boonham N, Mumford R, Dickinson M (2009) Panel of 23S rRNA gene-based real-time PCR assays for improved universal and group-specific detection of phytoplasmas. Appl Environ Microbiol 75:2945–2950

    Article  CAS  Google Scholar 

  16. Galetto L, Bosco D, Marzachì C (2005) Universal and group-specific real-time PCR diagnosis of flavescence dorée (16Sr-V), bois noir (16Sr-XII) and apple proliferation (16Sr-X) phytoplasmas from field-collected plant hosts and insect vectors. Ann Appl Biol 147:191–201

    Article  CAS  Google Scholar 

  17. Pfaffl MW (2012) Quantification strategies in real-time polymerase chain reaction. In: Filion M (ed) Quantitative real-time PCR. Applied microbiology. Horizon Scientific Press, Norfolk, USA

    Google Scholar 

  18. Oberhänsli T, Altenbach D, Bitterlin W (2011) Development of a duplex TaqMan real-time PCR for the general detection of phytoplasmas and 18S rRNA host genes in fruit trees and other plants. B Insectol 64(Supplement):S37–S38

    Google Scholar 

  19. Hren M, Boben J, Rotter A, Kralj P, Gruden K, Ravnikar M (2007) Real-time PCR detection systems for Flavescence dorée and bois noir phytoplasmas in grapevine: comparison with conventional PCR detection and application in diagnostics. Plant Pathol 56:785–796

    Article  CAS  Google Scholar 

  20. Angelini E, Bianchi GL, Filippin L, Morassutti C, Borgo M (2007) A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay. J Microbiol Methods 68:613–622

    Article  CAS  Google Scholar 

  21. Fahrentrapp J, Michl G, Breuer M (2013) Quantitative PCR assay for detection of bois noir phytoplasmas in grape and insect tissue. Vitis 52(2):85–89

    CAS  Google Scholar 

  22. Ikten C, Ustun R, Catal M, Yol E, Uzun B (2016) Multiplex real-time qPCR assay for simultaneous and sensitive detection of phytoplasmas in sesame plants and insect vectors. PLoS One 11(5)

    Article  Google Scholar 

  23. Frost K, Willis D, Groves R (2011) Detection and variability of aster yellows phytoplasma titer in its insect vector, Macrosteles quadrilineatus (Hemiptera: Cicadellidae). J Econ Entomol 104(6):1800–1815

    Article  CAS  Google Scholar 

  24. Satta E, Nanni I, Contaldo N, Collina M, Poveda J, Ramírez A, Bertaccini A (2017) General phytoplasma detection by a q-PCR method using mycoplasma primers. Mol Cell Probes 35(2017):1–7

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Abou-Jawdah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abou-Jawdah, Y., Aknadibossian, V., Jawhari, M., Tawidian, P., Abrahamian, P. (2019). Real-Time PCR Protocol for Phytoplasma Detection and Quantification. In: Musetti, R., Pagliari, L. (eds) Phytoplasmas. Methods in Molecular Biology, vol 1875. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8837-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8837-2_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8836-5

  • Online ISBN: 978-1-4939-8837-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics