Skip to main content

Generation of Conditional Knockout Mice by Sequential Insertion of Two loxP Sites In Cis Using CRISPR/Cas9 and Single-Stranded DNA Oligonucleotides

  • Protocol
  • First Online:
Microinjection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1874))

Abstract

Conditional knockout (cKO) mice are extremely valuable for biomedical research because they enable detailed analyses of gene functions in a tissue- or temporally-specific fashion. The conventional method for generating cKO mice is time consuming and labor intensive, which involves making a large gene-targeting construct, transfecting and screening many embryonic stem (ES) cell clones, injecting positive ES clones into blastocysts to produce chimeric mice, and breeding the chimeras to transmit the targeted gene through the germline. Recently developed CRISPR technology has revolutionized the way genetically engineered organisms are created. Knockout and knockin mice can now be made by directly injecting zygotes with Cas9, sgRNA, and donor DNA. In theory, cKO mice can be generated by simultaneously inserting two loxP sites using two sgRNAs and two oligonucleotides as donors, but in practice the probability of obtaining cKO mice in one step is still very low, partly because the efficiency of oligo-mediated knockin is much lower than non-homologous end joining (NHEJ) and partly because co-cutting juxtaposed sites in one allele at the same time often leads to the deletion of the entire fragment between the two cutting sites. Therefore, many laboratories prefer to insert the two loxP sites sequentially, i.e., generating mice with one loxP first and then use embryos collected from these mice to insert the second loxP site. In this chapter, we describe our procedures and timeline using this sequential method to make a Six6 cKO mouse line as a demonstration of its feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  PubMed  Google Scholar 

  2. Kucherlapati RS, Eves EM, Song KY, Morse BS, Smithies O (1984) Homologous recombination between plasmids in mammalian cells can be enhanced by treatment of input DNA. Proc Natl Acad Sci U S A 81:3153–3157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317:230–234

    Article  CAS  PubMed  Google Scholar 

  4. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O (1987) Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576–578. https://doi.org/10.1038/330576a0

    Article  CAS  PubMed  Google Scholar 

  5. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352. https://doi.org/10.1038/336348a0

    Article  CAS  PubMed  Google Scholar 

  6. Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512

    Article  CAS  PubMed  Google Scholar 

  7. Gu H, Zou YR, Rajewsky K (1993) Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73:1155–1164

    Article  CAS  PubMed  Google Scholar 

  8. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471. https://doi.org/10.7554/eLife.00471

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918. https://doi.org/10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:1370–1379. https://doi.org/10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen J, Du Y, He X, Huang X, Shi YS (2017) A convenient Cas9-based conditional knockout strategy for simultaneously targeting multiple genes in mouse. Sci Rep 7:517. https://doi.org/10.1038/s41598-017-00654-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mandasari M, Sawangarun W, Katsube K, Kayamori K, Yamaguchi A, Sakamoto K (2016) A facile one-step strategy for the generation of conditional knockout mice to explore the role of Notch1 in oroesophageal tumorigenesis. Biochem Biophys Res Commun 469:761–767. https://doi.org/10.1016/j.bbrc.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  15. Guzzardo PM, Rashkova C, Dos Santos RL, Tehrani R, Collin P, Burckstummer T (2017) A small cassette enables conditional gene inactivation by CRISPR/Cas9. Sci Rep 7:16770. https://doi.org/10.1038/s41598-017-16931-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Horii T, Morita S, Kimura M, Terawaki N, Shibutani M, Hatada I (2017) Efficient generation of conditional knockout mice via sequential introduction of lox sites. Sci Rep 7:7891. https://doi.org/10.1038/s41598-017-08496-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miura H, Quadros RM, Gurumurthy CB, Ohtsuka M (2018) Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat Protoc 13:195–215. https://doi.org/10.1038/nprot.2017.153

    Article  CAS  PubMed  Google Scholar 

  18. Quadros RM, Miura H, Harms DW, Akatsuka H, Sato T, Aida T, Redder R, Richardson GP, Inagaki Y, Sakai D, Buckley SM, Seshacharyulu P, Batra SK, Behlke MA, Zeiner SA, Jacobi AM, Izu Y, Thoreson WB, Urness LD, Mansour SL, Ohtsuka M, Gurumurthy CB (2017) Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins. Genome Biol 18:92. https://doi.org/10.1186/s13059-017-1220-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Truett GE, Heeger P, Mynatt RL, Truett AA, Walker JA, Warman ML (2000) Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). BioTechniques 29(52):54

    Google Scholar 

  20. Chang B, Hurd R, Wang J, Nishina P (2013) Survey of common eye diseases in laboratory mouse strains. Invest Ophthalmol Vis Sci 54:4974–4981. https://doi.org/10.1167/iovs.13-12289

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mattapallil MJ, Wawrousek EF, Chan CC, Zhao H, Roychoudhury J, Ferguson TA, Caspi RR (2012) The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Invest Ophthalmol Vis Sci 53:2921–2927. https://doi.org/10.1167/iovs.12-9662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Intramural Research Programs at the National Institute of Diabetes and Digestive and Kidney Diseases (Y.L. and D.F.), and the National Heart, Lung, and Blood Institute (Y.D., W.X., F.Z., and C.L.) at the National Institutes of Health. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Y., Du, Y., Xie, W., Zhang, F., Forrest, D., Liu, C. (2019). Generation of Conditional Knockout Mice by Sequential Insertion of Two loxP Sites In Cis Using CRISPR/Cas9 and Single-Stranded DNA Oligonucleotides. In: Liu, C., Du, Y. (eds) Microinjection. Methods in Molecular Biology, vol 1874. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8831-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8831-0_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8830-3

  • Online ISBN: 978-1-4939-8831-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics