Skip to main content

Quantitative Proteomics for Xenopus Embryos II, Data Analysis

  • Protocol
  • First Online:
Xenopus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1865))

Abstract

The oocytes, embryos, and cell-free lysates of the frog Xenopus laevis have emerged as powerful models for quantitative proteomic experiments. In the accompanying paper (Chapter 13) we describe how to prepare samples and acquire multiplexed proteomics spectra from those. As an illustrative example we use a 10-stage developmental time series from the egg to stage 35 (just before hatching). Here, we outline how to convert the ~700,000 acquired mass spectra from this time series into protein expression dynamics for ~9000 proteins. We first outline a preliminary quality-control analysis to discover any errors that occurred during sample preparation. We discuss how peptide and protein identification error rates are controlled, and how peptide and protein species are quantified. Our analysis relies on the freely available MaxQuant proteomics pipeline. Finally, we demonstrate how to start interpreting this large dataset by clustering and gene-set enrichment analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gurdon, J. B., & Wakefield, L. (1986). Microinjection of amphibian oocytes and eggs for the analysis of transcription. Microinjection and Organelle Transplantation Techniques, 269-299.

    Google Scholar 

  2. Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5(11):976–989. https://doi.org/10.1016/1044-0305(94)80016-2

    Article  CAS  PubMed  Google Scholar 

  3. Wühr M, Freeman RM Jr, Presler M, Horb ME, Peshkin L, Gygi S, Kirschner MW (2014) Deep proteomics of the Xenopus laevis egg using an mRNA-derived reference database. Curr Biol 24(13):1467–1475. https://doi.org/10.1016/j.cub.2014.05.044

    Article  PubMed  Google Scholar 

  4. Savitski MM, Wilhelm M, Hahne H, Kuster B, Bantscheff M (2015) A scalable approach for protein false discovery rate estimation in large proteomic data sets. Mol Cell Proteomics 14(9):2394–2404. https://doi.org/10.1074/mcp.M114.046995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M (2014) Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics 13(9):2513–2526. https://doi.org/10.1074/mcp.M113.031591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  CAS  PubMed  Google Scholar 

  7. Selevsek N, Chang CY, Gillet LC, Navarro P, Bernhardt OM, Reiter L, Cheng LY, Vitek O, Aebersold R (2015) Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATH-mass spectrometry. Mol Cell Proteomics 14(3):739–749. https://doi.org/10.1074/mcp.M113.035550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904

    Article  CAS  PubMed  Google Scholar 

  9. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. https://doi.org/10.1074/mcp.M400129-MCP200

    Article  CAS  PubMed  Google Scholar 

  10. Ting L, Rad R, Gygi SP, Haas W (2011) MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods 8(11):937–940. https://doi.org/10.1038/nmeth.1714 pii

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wühr M, Haas W, McAlister GC, Peshkin L, Rad R, Kirschner MW, Gygi SP (2012) Accurate multiplexed proteomics at the MS2 level using the complement reporter ion cluster. Anal Chem 84(21):9214–9221. https://doi.org/10.1021/ac301962s

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hebert AS, Merrill AE, Bailey DJ, Still AJ, Westphall MS, Strieter ER, Pagliarini DJ, Coon JJ (2013) Neutron-encoded mass signatures for multiplexed proteome quantification. Nat Methods 10(4):332–334. https://doi.org/10.1038/nmeth.2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McAlister GC, Nusinow DP, Jedrychowski MP, Wuhr M, Huttlin EL, Erickson BK, Rad R, Haas W, Gygi SP (2014) MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal Chem 86(14):7150–7158. https://doi.org/10.1021/ac502040v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wühr M, Guttler T, Peshkin L, McAlister GC, Sonnett M, Ishihara K, Groen AC, Presler M, Erickson BK, Mitchison TJ, Kirschner MW, Gygi SP (2015) The nuclear proteome of a vertebrate. Curr Biol 25(20):2663–2671. https://doi.org/10.1016/j.cub.2015.08.047

    Article  PubMed  Google Scholar 

  15. Peshkin L, Wühr M, Pearl E, Haas W, Freeman RM Jr, Gerhart JC, Klein AM, Horb M, Gygi SP, Kirschner MW (2015) On the relationship of protein and mRNA dynamics in vertebrate embryonic development. Dev Cell 35(3):383–394. https://doi.org/10.1016/j.devcel.2015.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Presler MS, Van Itallie E, Klein AM, Kunz R, Coughlin P, Peshkin L, Gygi S, Wühr M, Kirschner M (2017) Proteomics of phosphorylation and protein dynamics during fertilization and meiotic exit in the Xenopus egg. bioRxiv 2017:145086

    Google Scholar 

  17. Tyanova S, Temu T, Cox J (2016) The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc 11(12):2301–2319. https://doi.org/10.1038/nprot.2016.136

    Article  CAS  PubMed  Google Scholar 

  18. Elias JE, Gygi SP (2007) Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nat Methods 4(3):207–214. https://doi.org/10.1038/nmeth1019 nmeth1019 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. Huttlin EL, Jedrychowski MP, Elias JE, Goswami T, Rad R, Beausoleil SA, Villen J, Haas W, Sowa ME, Gygi SP (2010) A tissue-specific atlas of mouse protein phosphorylation and expression. Cell 143(7):1174–1189. https://doi.org/10.1016/j.cell.2010.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vizcaíno JL, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F, Ternent T, Xu Q-W, Wang R, Hermjakob H, (2016) 2016 update of the PRIDE database and its related tools. Nucleic Acids Research 44 (D1):D447-D456

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hubrecht-Laboratorium (Embryologisch Instituut), Nieuwkoop PD, Faber J (1967). Normal Tables of Xenopus Laevis:(Daudin) a Systematical and Chronological Survey of the Development from the Fertilized Egg Till the End of the Metamorphosis. North-Holland.

    Google Scholar 

Download references

Acknowledgments

We thank Lillia Ryazanova for help with the sample preparation, and Felix Keber for comments and suggestions on the manuscript. MS was supported by a NIH F31 pre-doctoral fellowship 5F31GM116451. This work was supported by NIH grant 1R35GM128813 and by Princeton University startup funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wühr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sonnett, M., Gupta, M., Nguyen, T., Wühr, M. (2018). Quantitative Proteomics for Xenopus Embryos II, Data Analysis. In: Vleminckx, K. (eds) Xenopus. Methods in Molecular Biology, vol 1865. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8784-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8784-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8783-2

  • Online ISBN: 978-1-4939-8784-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics