Skip to main content

Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles

  • Protocol
  • First Online:
X-Chromosome Inactivation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1861))

Abstract

Recent advances in next-generation sequencing (NGS) and chromosome conformation capture (3C) analysis have led to the development of Hi-C, a genome-wide version of the 3C method. Hi-C has identified new levels of chromosome organization such as A/B compartments, topologically associating domains (TADs) as well as large megadomains on the inactive X chromosome, while allowing the identification of chromatin loops at the genome scale. Despite its powerfulness, Hi-C data analysis is much more involved compared to conventional NGS applications such as RNA-seq or ChIP-seq and requires many more steps. This presents a significant hurdle for those who wish to implement Hi-C technology into their laboratory. On the other hand, genomics data repository sites sometimes contain processed Hi-C data sets, allowing researchers to perform further analysis without the need for high-spec workstations and servers. In this chapter, we provide a detailed description on how to calculate A/B compartment profiles from processed Hi-C data on the autosomes and the active/inactive X chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker J, Rippe K, Dekker M, Kleckner N (2002) Capturing chromosome conformation. Science 295:1306–1311. https://doi.org/10.1126/science.1067799

    Article  CAS  PubMed  Google Scholar 

  2. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403. https://doi.org/10.1038/nrg3454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. de Wit E, de Laat W (2012) A decade of 3C technologies-insights into nuclear organization. Genes Dev 26:11–24. https://doi.org/10.1101/gad.179804.111.GENES

    Article  PubMed  PubMed Central  Google Scholar 

  4. Denker A, De Laat W (2016) The second decade of 3C technologies: detailed insights into nuclear organization. Genes Dev 30:1357–1382. https://doi.org/10.1101/gad.281964.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dixon JR, Gorkin DU, Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680. https://doi.org/10.1016/j.molcel.2016.05.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38:1348–1354. https://doi.org/10.1038/ng1896

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Z, Tavoosidana G, Sjölinder M et al (2006) Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet 38:1341–1347. https://doi.org/10.1038/ng1891

    Article  CAS  PubMed  Google Scholar 

  8. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293. https://doi.org/10.1126/science.1181369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cremer T, Kreth G, Koester H et al (2000) Chromosome territories, interchromatin domain compartment, and nuclear matrix: an integrated view of the functional nuclear architecture. Crit Rev Eukaryot Gene Expr 10:179–212. https://doi.org/10.1615/CritRevEukarGeneExpr.v10.i2.60

    Article  CAS  PubMed  Google Scholar 

  10. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:376–380. https://doi.org/10.1038/nature11082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nora EP, Lajoie BR, Schulz EG et al (2012) Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485:381–385. https://doi.org/10.1038/nature11049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680. https://doi.org/10.1016/j.cell.2014.11.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Deng X, Ma W, Ramani V et al (2015) Bipartite structure of the inactive mouse X chromosome. Genome Biol 16:152. https://doi.org/10.1186/s13059-015-0728-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Minajigi A, Froberg JE, Wei C et al (2015) A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. Science 349:aab2276-aab2276. https://doi.org/10.1126/science.aab2276

    Article  CAS  Google Scholar 

  15. Giorgetti L, Lajoie BR, Carter AC et al (2016) Structural organization of the inactive X chromosome in the mouse. Nature 535:575–579. https://doi.org/10.1038/nature18589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Darrow EM, Huntley MH, Dudchenko O et al (2016) Deletion of DXZ4 on the human inactive X chromosome alters higher-order genome architecture. Proc Natl Acad Sci U S A 113:E4504–E4512. https://doi.org/10.1073/pnas.1609643113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nagano T, Várnai C, Schoenfelder S et al (2015) Comparison of Hi-C results using in-solution versus in-nucleus ligation. Genome Biol:1–13. https://doi.org/10.1186/s13059-015-0753-7

  18. Kalhor R, Tjong H, Jayathilaka N et al (2012) Genome architectures revealed by tethered chromosome conformation capture and population-based modeling. Nat Biotechnol 30:90–98. https://doi.org/10.1038/nbt.2057

    Article  CAS  Google Scholar 

  19. Ma W, Ay F, Lee C et al (2015) Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat Methods 12:71–78. https://doi.org/10.1038/nmeth.3205

    Article  CAS  PubMed  Google Scholar 

  20. Hsieh THS, Weiner A, Lajoie B et al (2015) Mapping nucleosome resolution chromosome folding in yeast by micro-C. Cell 162:108–119. https://doi.org/10.1016/j.cell.2015.05.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dryden NH, Broome LR, Dudbridge F et al (2014) Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 24:1854–1868. https://doi.org/10.1101/gr.175034.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hughes JR, Roberts N, McGowan S et al (2014) Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat Genet 46:205–212. https://doi.org/10.1038/ng.2871

    Article  CAS  PubMed  Google Scholar 

  23. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64. https://doi.org/10.1038/nature12593

    Article  CAS  PubMed  Google Scholar 

  24. Du Z, Zheng H, Huang B et al (2017) Allelic reprogramming of 3D chromatin architecture during early mammalian development. Nature 547:232–235. https://doi.org/10.1038/nature23263

    Article  CAS  PubMed  Google Scholar 

  25. Ke Y, Xu Y, Chen X et al (2017) 3D chromatin structures of mature gametes and structural reprogramming during mammalian resource. 3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis. Cell 170:367–381.e20. https://doi.org/10.1016/j.cell.2017.06.029

    Article  CAS  PubMed  Google Scholar 

  26. Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549:219–226. https://doi.org/10.1038/nature23884

    Article  CAS  Google Scholar 

  27. van Steensel B, Belmont AS (2017) Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell 169:780–791. https://doi.org/10.1016/j.cell.2017.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ryba T, Hiratani I, Lu J et al (2010) Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 20:761–770. https://doi.org/10.1101/gr.099655.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dixon JR, Jung I, Selvaraj S et al (2015) Chromatin architecture reorganization during stem cell differentiation. Nature 518:331–336. https://doi.org/10.1038/nature14222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Henry VJ, Bandrowski AE, Pepin AS et al (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford). https://doi.org/10.1093/database/bau069

    Article  Google Scholar 

  31. Servant N, Varoquaux N, Lajoie BR et al (2015) HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol 16:259. https://doi.org/10.1186/s13059-015-0831-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Durand NC, Robinson JT, Shamim MS et al (2016) Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst 3:99–101. https://doi.org/10.1016/j.cels.2015.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kerpedjiev P, Abdennur N, Lekschas F et al (2017) HiGlass: web-based visual comparison and exploration of genome interaction maps. bioRxiv 2017:1–7. https://doi.org/10.1101/121889

    Article  CAS  Google Scholar 

  34. Akdemir KC, Chin L (2015) HiCPlotter integrates genomic data with interaction matrices. Genome Biol 16:198. https://doi.org/10.1186/s13059-015-0767-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McDaniell R, Lee BK, Song L et al (2010) Heritable individual-specific and allele-specific chromatin signatures in humans. Science 328:235–239. https://doi.org/10.1126/science.1184655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kucera KS, Reddy TE, Pauli F et al (2011) Allele-specific distribution of RNA polymerase II on female X chromosomes. Hum Mol Genet 20:3964–3973. https://doi.org/10.1093/hmg/ddr315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wingett S, Ewels P, Furlan-Magaril M et al (2015) HiCUP: pipeline for mapping and processing Hi-C data. F1000Research. https://doi.org/10.12688/f1000research.7334.1

    Article  Google Scholar 

  38. Servant N, Lajoie BR, Nora EP et al (2012) HiTC: Exploration of high-throughput “C” experiments. Bioinformatics 28:2843–2844. https://doi.org/10.1093/bioinformatics/bts521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Castellano G, Le DF, Pulido AH et al (2015) HiC-inspector: a toolkit for high-throughput chromosome capture data. bioRxiv. https://doi.org/10.1101/020636

  40. Durand NC, Shamim MS, Machol I et al (2016) Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst 3:95–98. https://doi.org/10.1016/j.cels.2016.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lazaris C, Kelly S, Ntziachristos P et al (2016) HiC-bench: comprehensive and reproducible Hi-C data analysis designed for parameter exploration and benchmarking. bioRxiv. https://doi.org/10.1186/s12864-016-3387-6

  42. Hwang YC, Lin CF, Valladares O et al (2015) HIPPIE: a high-throughput identification pipeline for promoter interacting enhancer elements. Bioinformatics 31:1290–1292. https://doi.org/10.1093/bioinformatics/btu801

    Article  PubMed  Google Scholar 

  43. Serra F, Baù D, Filion G, Marti-Renom MA (2016) Structural features of the fly chromatin colors revealed by automatic three-dimensional modeling. bioRxiv. https://doi.org/10.1101/036764

  44. Sauria MEG, Phillips-Cremins JE, Corces VG, Taylor J (2015) HiFive: a tool suite for easy and efficient HiC and 5C data analysis. Genome Biol 16:237. https://doi.org/10.1186/s13059-015-0806-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schmid MW, Grob S, Grossniklaus U (2015) HiCdat: a fast and easy-to-use Hi-C data analysis tool. BMC Bioinformatics 16:277. https://doi.org/10.1186/s12859-015-0678-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yaffe E, Tanay A (2011) Probabilistic modeling of Hi-C contact maps eliminates systematic biases to characterize global chromosomal architecture. Nat Genet 43:1059–1065. https://doi.org/10.1038/ng.947

    Article  CAS  PubMed  Google Scholar 

  47. Imakaev M, Fudenberg G, McCord RP et al (2012) Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods 9:999–1003. https://doi.org/10.1038/nmeth.2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lin YC, Benner C, Mansson R et al (2012) Global changes in the nuclear positioning of genes and intra- and interdomain genomic interactions that orchestrate B cell fate. Nat Immunol. https://doi.org/10.1038/ni.2432

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a RIKEN CDB intramural grant to I.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Hiratani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Miura, H., Poonperm, R., Takahashi, S., Hiratani, I. (2018). Practical Analysis of Hi-C Data: Generating A/B Compartment Profiles. In: Sado, T. (eds) X-Chromosome Inactivation. Methods in Molecular Biology, vol 1861. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-8766-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8766-5_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-8765-8

  • Online ISBN: 978-1-4939-8766-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics