Skip to main content

Inducible Protein Production in 293 Cells Using the piggyBac Transposon System

  • Protocol
  • First Online:
Recombinant Protein Expression in Mammalian Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1850))

Abstract

Recombinant proteins are widely used to study various pathophysiological processes. Nevertheless, the establishment of the desired protein-producing stable mammalian cell lines using traditional methods is hampered by multiple laborious steps. In this chapter, we describe a simple and robust system that allows for the derivation of stable transgenic cell lines in 293 cells, yielding high protein expression levels, in a short time period. This methodology is based on the piggyBac transposon system and, notably, it allows for inducible production of the protein of interest. Moreover, it can easily be used in conventional laboratory cell culture settings and does not require any specialized devices. Herein, we outline all the steps of this procedure in detail and point out specific considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:393–1398. https://doi.org/10.1038/nbt1026

    Article  CAS  Google Scholar 

  2. Assenberg R, Wan PT, Geisse S, Mayr LM (2013) Advances in recombinant protein expression for use in pharmaceutical research. Curr Opin Struct Biol 23:393–402. https://doi.org/10.1016/j.sbi.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  3. Dyson MR (2016) Fundamentals of expression in mammalian cells. Adv Exp Med Biol 896:217–224. https://doi.org/10.1007/978-3-319-27216-0_14

    Article  CAS  PubMed  Google Scholar 

  4. Li Z, Michael IP, Zhou D, Nagy A, Rini JM (2013) Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci U S A 110:5004–5009. https://doi.org/10.1073/pnas.1218620110

    Article  PubMed  PubMed Central  Google Scholar 

  5. Matasci M, Baldi L, Hacker DL, Wurm FM (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol Bioeng 108:2141–2150. https://doi.org/10.1002/bit.23167

    Article  CAS  PubMed  Google Scholar 

  6. Wu SCY, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci U S A 103:15008–15013. https://doi.org/10.1073/pnas.0606979103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balasubramanian S, Rajendra Y, Baldi L, Hacker DL, Wurm FM (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol Bioeng 113:1234–1243. https://doi.org/10.1002/bit.25888

    Article  CAS  PubMed  Google Scholar 

  8. Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483. https://doi.org/10.1016/j.cell.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  9. Wilson MH, Coates CJ, George AL (2007) PiggyBac transposon-mediated gene transfer in human cells. Mol Ther 15:139–145. https://doi.org/10.1038/sj.mt.6300028

    Article  CAS  PubMed  Google Scholar 

  10. Michael IP, Monetti C, Chiu AC, Zhang P, Baba T, Nishino K, Agha-Mohammadi S, Woltjen K, Sung HK, Nagy A (2012) Highly efficient site-specific transgenesis in cancer cell lines. Mol Cancer 11:89–89. https://doi.org/10.1186/1476-4598-11-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Caro LN, Li Z, Balo AR, Van Eps N, Rini JM, Ernst OP (2015) Rapid and facile recombinant expression of bovine rhodopsin in HEK293S GnTI(−) cells using a PiggyBac inducible system. Methods Enzymol 556:307–330. https://doi.org/10.1016/bs.mie.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  12. Michael IP, Westenskow PD, Hacibekiroglu S, Greenwald AC, Ballios BG, Kurihara T, Li Z, Warren CM, Zhang P, Aguilar E, Donaldson L, Marchetti V, Baba T, Hussein SM, Sung HK, Iruela-Arispe ML, Rini JM, van der Kooy D, Friedlander M, Nagy A (2014) Local acting sticky-trap inhibits vascular endothelial growth factor dependent pathological angiogenesis in the eye. EMBO Mol Med 6:604–623. https://doi.org/10.1002/emmm.201303708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D, Michael IP, Bergers G (2017) Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 9(385):eaak9679. https://doi.org/10.1126/scitranslmed.aak9679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keir LS, Firth R, Aponik L, Feitelberg D, Sakimoto S, Aguilar E, Welsh GI, Richards A, Usui Y, Satchell SC, Kuzmuk V, Coward RJ, Goult J, Bull KR, Sharma R, Bharti K, Westenskow PD, Michael IP, Saleem MA, Friedlander M (2017) VEGF regulates local inhibitory complement proteins in the eye and kidney. J Clin Invest 127:199–214. https://doi.org/10.1172/JCI86418

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iacovos P. Michael .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michael, I.P., Nagy, A. (2018). Inducible Protein Production in 293 Cells Using the piggyBac Transposon System. In: Hacker, D. (eds) Recombinant Protein Expression in Mammalian Cells. Methods in Molecular Biology, vol 1850. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8730-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8730-6_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8729-0

  • Online ISBN: 978-1-4939-8730-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics