Skip to main content

Cellular and Vascular Components of Tertiary Lymphoid Structures

  • Protocol
  • First Online:
Tertiary Lymphoid Structures

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1845))

Abstract

Inflammatory immune cells recruited at the site of chronic inflammation form structures that resemble secondary lymphoid organs (SLO). These are characterized by segregated areas of prevalent T- or B-cell aggregation, differentiation of high endothelial venules, and local activation of resident stromal cells, including lymphatic endothelial cells. B-cell proliferation and affinity maturation toward locally displayed autoantigens have been demonstrated at these sites, known as tertiary lymphoid structures (TLS). TLS formation during chronic inflammation has been associated with local disease persistence and progression, as well as increased systemic manifestations. While bearing a similar histological structure to SLO, the signals that regulate TLS and SLO formation can diverge and a series of pro-inflammatory cytokines have been ascribed as responsible for TLS formation at different anatomical sites. Moreover, for a long time the structural compartment that regulates TLS homeostasis, including survival and recirculation of leucocytes has been neglected. In this chapter, we summarize the novel data available on TLS formation, structural organization, and the functional and anatomical links connecting TLS and SLOs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barone F, Gardner DH, Nayar S et al (2016) Stromal fibroblasts in tertiary lymphoid structures: a novel target in chronic inflammation. Front Immunol 7:477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6:205–217

    Article  PubMed  CAS  Google Scholar 

  3. Link A, Hardie DL, Favre S et al (2011) Association of T-zone reticular networks and conduits with ectopic lymphoid tissues in mice and humans. Am J Pathol 178:1662–1675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Barone F, Bombardieri M, Manzo A et al (2005) Association of CXCL13 and CCL21 expression with the progressive organization of lymphoid-like structures in Sjogren's syndrome. Arthritis Rheum 52:1773–1784

    Article  PubMed  CAS  Google Scholar 

  5. Manzo A, Paoletti S, Carulli M et al (2005) Systematic microanatomical analysis of CXCL13 and CCL21in situ production and progressive lymphoid organization in rheumatoid synovitis. Eur J Immunol 35:1347–1359

    Article  PubMed  CAS  Google Scholar 

  6. Kratz A, Campos-Neto A, Hanson MS, Ruddle NH (1996) Chronic inflammation caused by lymphotoxin is lymphoid neogenesis. J Exp Med 183:1461–1472

    Article  PubMed  CAS  Google Scholar 

  7. Drayton DL, Ying X, Lee J et al (2003) Ectopic LT directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J Exp Med 197:1153–1163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Matsumoto M, Mariathasan S, Nahm MH et al (1996) Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271:1289–1291

    Article  PubMed  CAS  Google Scholar 

  9. Sacca R, Kratz A, Campos-Neto A et al (1995) Lymphotoxin: from chronic inflammation to lymphoid organs. J Inflamm 47:81–84

    PubMed  CAS  Google Scholar 

  10. Schrama D, thor Straten P, Fischer WH et al (2001) Targeting of lymphotoxin-alpha to the tumor elicits an efficient immune response associated with induction of peripheral lymphoid-like tissue. Immunity 14:111–121

    Article  PubMed  CAS  Google Scholar 

  11. Buckley CD, Barone F, Nayar S et al (2015) Stromal cells in chronic inflammation and tertiary lymphoid organ formation. Annu Rev Immunol 33:715–745

    Article  PubMed  CAS  Google Scholar 

  12. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M et al (2011) The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat Immunol 12:639–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Nagatake T, Fukuyama S, Kim DY et al (2009) Id2-, RORgammat-, and LTbetaR-independent initiation of lymphoid organogenesis in ocular immunity. J Exp Med 206:2351–2364

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Harmsen A, Kusser K, Hartson L et al (2002) Cutting edge: organogenesis of nasal-associated lymphoid tissue (NALT) occurs independently of lymphotoxin-alpha (LT alpha) and retinoic acid receptor-related orphan receptor-gamma, but the organization of NALT is LT alpha dependent. J Immunol 168:986–990

    Article  PubMed  CAS  Google Scholar 

  15. Fukuyama S, Hiroi T, Yokota Y et al (2002) Initiation of NALT organogenesis is independent of the IL-7R, LTbetaR, and NIK signaling pathways but requires the Id2 gene and CD3(−)CD4(+)CD45(+) cells. Immunity 17:31–40

    Article  PubMed  CAS  Google Scholar 

  16. Furtado GC, Marinkovic T, Martin AP et al (2007) Lymphotoxin beta receptor signaling is required for inflammatory lymphangiogenesis in the thyroid. Proc Natl Acad Sci U S A 104:5026–5031

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kollias G (2005) TNF pathophysiology in murine models of chronic inflammation and autoimmunity. Semin Arthritis Rheum 34:3–6

    Article  PubMed  CAS  Google Scholar 

  18. Jacob CO, Aiso S, Michie SA et al (1990) Prevention of diabetes in nonobese diabetic mice by tumor necrosis factor (TNF): similarities between TNF-alpha and interleukin 1. Proc Natl Acad Sci U S A 87:968–972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ernandez T, Mayadas TN (2009) Immunoregulatory role of TNFalpha in inflammatory kidney diseases. Kidney Int 76:262–276

    Article  PubMed  CAS  Google Scholar 

  20. Grabner R, Lotzer K, Dopping S et al (2009) Lymphotoxin beta receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J Exp Med 206:233–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lotzer K, Dopping S, Connert S et al (2010) Mouse aorta smooth muscle cells differentiate into lymphoid tissue organizer-like cells on combined tumor necrosis factor receptor-1/lymphotoxin beta-receptor NF-kappaB signaling. Arterioscler Thromb Vasc Biol 30:395–402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Fletcher D, Triantafyllou A (2007) Mast cells in the salivary glands and tongue of the ferret: demonstration and some histochemical observations. Anat Histol Embryol 36:38–42

    Article  PubMed  CAS  Google Scholar 

  23. Gommerman JL, Browning JL (2003) Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 3:642–655

    Article  PubMed  CAS  Google Scholar 

  24. Pikor NB, Astarita JL, Summers-Deluca L et al (2015) Integration of Th17- and lymphotoxin-derived signals initiates meningeal-resident stromal cell remodeling to propagate neuroinflammation. Immunity 43:1160–1173

    Article  PubMed  CAS  Google Scholar 

  25. Yu P, Lee Y, Liu W et al (2004) Priming of naive T cells inside tumors leads to eradication of established tumors. Nat Immunol 5:141–149

    Article  PubMed  CAS  Google Scholar 

  26. Astorri E, Bombardieri M, Gabba S et al (2010) Evolution of ectopic lymphoid neogenesis and in situ autoantibody production in autoimmune nonobese diabetic mice: cellular and molecular characterization of tertiary lymphoid structures in pancreatic islets. J Immunol 185:3359–3368

    Article  PubMed  CAS  Google Scholar 

  27. Lee Y, Chin RK, Christiansen P et al (2006) Recruitment and activation of naive T cells in the islets by lymphotoxin beta receptor-dependent tertiary lymphoid structure. Immunity 25:499–509

    Article  PubMed  CAS  Google Scholar 

  28. Mebius RE (2003) Organogenesis of lymphoid tissues. Nat Rev Immunol 3:292–303

    Article  PubMed  CAS  Google Scholar 

  29. Onder L, Morbe U, Pikor N et al (2017) Lymphatic endothelial cells control initiation of lymph node organogenesis. Immunity 47:80–92.e4

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida H, Naito A, Inoue J et al (2002) Different cytokines induce surface lymphotoxin-alphabeta on IL-7 receptor-alpha cells that differentially engender lymph nodes and Peyer's patches. Immunity 17:823–833

    Article  PubMed  CAS  Google Scholar 

  31. van de Pavert SA, Mebius RE (2014) Development of secondary lymphoid organs in relation to lymphatic vasculature. Adv Anat Embryol Cell Biol 214:81–91

    Article  PubMed  Google Scholar 

  32. Barone F, Bombardieri M, Rosado MM et al (2008) CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization. J Immunol 180:5130–5140

    Article  PubMed  CAS  Google Scholar 

  33. Goya S, Matsuoka H, Mori M et al (2003) Sustained interleukin-6 signalling leads to the development of lymphoid organ-like structures in the lung. J Pathol 200:82–87

    Article  PubMed  CAS  Google Scholar 

  34. Lee JJ, McGarry MP, Farmer SC et al (1997) Interleukin-5 expression in the lung epithelium of transgenic mice leads to pulmonary changes pathognomonic of asthma. J Exp Med 185:2143–2156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Fleige H, Ravens S, Moschovakis GL et al (2014) IL-17-induced CXCL12 recruits B cells and induces follicle formation in BALT in the absence of differentiated FDCs. J Exp Med 211:643–651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Peters A, Pitcher LA, Sullivan JM et al (2011) Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35:986–996

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Khader SA, Guglani L, Rangel-Moreno J et al (2011) IL-23 is required for long-term control of Mycobacterium tuberculosis and B cell follicle formation in the infected lung. J Immunol 187:5402–5407

    Article  PubMed  CAS  Google Scholar 

  38. Ciccia F, Accardo-Palumbo A, Alessandro R et al (2012) Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum 64:1869–1878

    Article  PubMed  CAS  Google Scholar 

  39. Lavoie TN, Stewart CM, Berg KM et al (2011) Expression of interleukin-22 in Sjogren's syndrome: significant correlation with disease parameters. Scand J Immunol 74:377–382

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Barone F, Nayar S, Campos J et al (2015) IL-22 regulates lymphoid chemokine production and assembly of tertiary lymphoid organs. Proc Natl Acad Sci U S A 112:11024–11029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Drayton DL, Liao S, Mounzer RH, Ruddle NH (2006) Lymphoid organ development: from ontogeny to neogenesis. Nat Immunol 7:344–353

    Article  PubMed  CAS  Google Scholar 

  42. Luther SA, Lopez T, Bai W et al (2000) BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12:471–481

    Article  PubMed  CAS  Google Scholar 

  43. Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148:11–23

    Article  PubMed  CAS  Google Scholar 

  44. Katakai T, Hara T, Sugai M et al (2003) Th1-biased tertiary lymphoid tissue supported by CXC chemokine ligand 13-producing stromal network in chronic lesions of autoimmune gastritis. J Immunol 171:4359–4368

    Article  PubMed  CAS  Google Scholar 

  45. Greenbaum A, Hsu YM, Day RB et al (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495:227–230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Okada T, Ngo VN, Ekland EH et al (2002) Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med 196:65–75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Luther SA, Bidgol A, Hargreaves DC et al (2002) Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 169:424–433

    Article  PubMed  CAS  Google Scholar 

  48. Chen SC, Vassileva G, Kinsley D et al (2002) Ectopic expression of the murine chemokines CCL21a and CCL21b induces the formation of lymph node-like structures in pancreas, but not skin, of transgenic mice. J Immunol 168:1001–1008

    Article  PubMed  CAS  Google Scholar 

  49. Marinkovic T (2006) Interaction of mature CD3+CD4+ T cells with dendritic cells triggers the development of tertiary lymphoid structures in the thyroid. J Clin Investig 116:2622–2632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Manzo A, Bugatti S, Caporali R et al (2007) CCL21 expression pattern of human secondary lymphoid organ stroma is conserved in inflammatory lesions with lymphoid neogenesis. Am J Pathol 171:1549–1562

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Salomonsson S, Dorner T, Theander E et al (2002) A serologic marker for fetal risk of congenital heart block. Arthritis Rheum 46:1233–1241

    Article  PubMed  CAS  Google Scholar 

  52. Amft N, Bowman SJ (2001) Chemokines and cell trafficking in Sjogren's syndrome. Scand J Immunol 54:62–69

    Article  PubMed  CAS  Google Scholar 

  53. Aust G, Sittig D, Becherer L et al (2004) The role of CXCR5 and its ligand CXCL13 in the compartmentalization of lymphocytes in thyroids affected by autoimmune thyroid diseases. Eur J Endocrinol 150:225–234

    Article  PubMed  CAS  Google Scholar 

  54. de Chaisemartin L, Goc J, Damotte D et al (2011) Characterization of chemokines and adhesion molecules associated with T cell presence in tertiary lymphoid structures in human lung cancer. Cancer Res 71:6391–6399

    Article  PubMed  CAS  Google Scholar 

  55. Takemura S, Braun A, Crowson C et al (2001) Lymphoid neogenesis in rheumatoid synovitis. J Immunol 167:1072–1080

    Article  PubMed  CAS  Google Scholar 

  56. Bugatti S, Manzo A, Bombardieri M et al (2011) Synovial tissue heterogeneity and peripheral blood biomarkers. Curr Rheumatol Rep 13:440–448

    Article  PubMed  CAS  Google Scholar 

  57. Humby F, Bombardieri M, Manzo A et al (2009) Ectopic lymphoid structures support ongoing production of class-switched autoantibodies in rheumatoid synovium. PLoS Med 6:e1

    Article  PubMed  PubMed Central  Google Scholar 

  58. Weyand CM, Goronzy JJ (2003) Ectopic germinal center formation in rheumatoid synovitis. Ann N Y Acad Sci 987:140–149

    Article  PubMed  CAS  Google Scholar 

  59. Meier D, Bornmann C, Chappaz S et al (2007) Ectopic lymphoid-organ development occurs through interleukin 7-mediated enhanced survival of lymphoid-tissue-inducer cells. Immunity 26:643–654

    Article  PubMed  CAS  Google Scholar 

  60. Roozendaal R, Mebius RE (2011) Stromal cell-immune cell interactions. Annu Rev Immunol 29:23–43

    Article  PubMed  CAS  Google Scholar 

  61. Ruddle NH (2014) Lymphatic vessels and tertiary lymphoid organs. J Clin Invest 124:953–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Bombardieri M, Barone F, Humby F et al (2007) Activation-induced cytidine deaminase expression in follicular dendritic cell networks and interfollicular large B cells supports functionality of ectopic lymphoid neogenesis in autoimmune sialoadenitis and MALT lymphoma in Sjogren's syndrome. J Immunol 179:4929–4938

    Article  PubMed  CAS  Google Scholar 

  63. Drumea-Mirancea M, Wessels JT, Muller CA et al (2006) Characterization of a conduit system containing laminin-5 in the human thymus: a potential transport system for small molecules. J Cell Sci 119:1396–1405

    Article  PubMed  CAS  Google Scholar 

  64. Pitzalis C, Jones GW, Bombardieri M, Jones SA (2014) Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat Rev Immunol 14:447–462

    Article  PubMed  CAS  Google Scholar 

  65. Krautler NJ, Kana V, Kranich J et al (2012) Follicular dendritic cells emerge from ubiquitous perivascular precursors. Cell 150:194–206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Peduto L, Dulauroy S, Lochner M et al (2009) Inflammation recapitulates the ontogeny of lymphoid stromal cells. J Immunol 182:5789–5799

    Article  PubMed  CAS  Google Scholar 

  67. Dutertre CA, Clement M, Morvan M et al (2014) Deciphering the stromal and hematopoietic cell network of the adventitia from non-aneurysmal and aneurysmal human aorta. PLoS One 9:e89983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Salomonsson S, Larsson P, Tengner P et al (2002) Expression of the B cell-attracting chemokine CXCL13 in the target organ and autoantibody production in ectopic lymphoid tissue in the chronic inflammatory disease Sjogren's syndrome. Scand J Immunol 55:336–342

    Article  PubMed  CAS  Google Scholar 

  69. Pober JS, Sessa WC (2007) Evolving functions of endothelial cells in inflammation. Nat Rev Immunol 7:803–815

    Article  PubMed  CAS  Google Scholar 

  70. Clark PR, Manes TD, Pober JS, Kluger MS (2007) Increased ICAM-1 expression causes endothelial cell leakiness, cytoskeletal reorganization and junctional alterations. J Invest Dermatol 127:762–774

    Article  PubMed  CAS  Google Scholar 

  71. Adams DH, Shaw S (1994) Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343:831–836

    Article  PubMed  CAS  Google Scholar 

  72. Middleton J, Neil S, Wintle J et al (1997) Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell 91:385–395

    Article  PubMed  CAS  Google Scholar 

  73. Pober JS, Orosz CG, Rose ML, Savage CO (1996) Can graft endothelial cells initiate a host anti-graft immune response? Transplantation 61:343–349

    Article  PubMed  CAS  Google Scholar 

  74. Shiao SL, McNiff JM, Pober JS (2005) Memory T cells and their costimulators in human allograft injury. J Immunol 175:4886–4896

    Article  PubMed  CAS  Google Scholar 

  75. Girard JP, Springer TA (1995) High endothelial venules (HEVs): specialized endothelium for lymphocyte migration. Immunol Today 16:449–457

    Article  PubMed  CAS  Google Scholar 

  76. Carragher D, Johal R, Button A et al (2004) A stroma-derived defect in NF-kappaB2−/− mice causes impaired lymph node development and lymphocyte recruitment. J Immunol 173:2271–2279

    Article  PubMed  CAS  Google Scholar 

  77. Browning JL, Allaire N, Ngam-Ek A et al (2005) Lymphotoxin-beta receptor signaling is required for the homeostatic control of HEV differentiation and function. Immunity 23:539–550

    Article  PubMed  CAS  Google Scholar 

  78. Onder L, Danuser R, Scandella E et al (2013) Endothelial cell-specific lymphotoxin-beta receptor signaling is critical for lymph node and high endothelial venule formation. J Exp Med 210:465–473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Huggenberger R, Siddiqui SS, Brander D et al (2011) An important role of lymphatic vessel activation in limiting acute inflammation. Blood 117:4667–4678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Martinez-Corral I, Ulvmar MH, Stanczuk L et al (2015) Nonvenous origin of dermal lymphatic vasculature. Circ Res 116:1649–1654

    Article  PubMed  CAS  Google Scholar 

  81. Osada M, Inoue O, Ding G et al (2012) Platelet activation receptor CLEC-2 regulates blood/lymphatic vessel separation by inhibiting proliferation, migration, and tube formation of lymphatic endothelial cells. J Biol Chem 287:22241–22252

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Watson SP, Lowe K, Finney BA (2014) Platelets in lymph vessel development and integrity. Adv Anat Embryol Cell Biol 214:93–105

    Article  PubMed  Google Scholar 

  83. Liao S, Ruddle NH (2006) Synchrony of high endothelial venules and lymphatic vessels revealed by immunization. J Immunol 177:3369–3379

    Article  PubMed  CAS  Google Scholar 

  84. Fletcher AL, Malhotra D, Turley SJ (2011) Lymph node stroma broaden the peripheral tolerance paradigm. Trends Immunol 32:12–18

    Article  PubMed  CAS  Google Scholar 

  85. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17:1371–1380

    Article  PubMed  CAS  Google Scholar 

  86. Flister MJ, Wilber A, Hall KL et al (2010) Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood 115:418–429

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Mounzer RH, Svendsen OS, Baluk P et al (2010) Lymphotoxin-alpha contributes to lymphangiogenesis. Blood 116:2173–2182

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature 438:946–953

    Article  PubMed  CAS  Google Scholar 

  89. Kunder CA, St John AL, Abraham SN (2011) Mast cell modulation of the vascular and lymphatic endothelium. Blood 118:5383–5393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Cursiefen C, Chen L, Borges LP et al (2004) VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113:1040–1050

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Hamrah P, Chen L, Zhang Q, Dana MR (2003) Novel expression of vascular endothelial growth factor receptor (VEGFR)-3 and VEGF-C on corneal dendritic cells. Am J Pathol 163:57–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lee JY, Park C, Cho YP et al (2010) Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization. Circulation 122:1413–1425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Kerjaschki D, Huttary N, Raab I et al (2006) Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 12:230–234

    Article  PubMed  CAS  Google Scholar 

  94. Maruyama K, Ii M, Cursiefen C et al (2005) Inflammation-induced lymphangiogenesis in the cornea arises from CD11b-positive macrophages. J Clin Invest 115:2363–2372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Nayar S, Campos J, Chung MM et al (2016) Bimodal expansion of the lymphatic vessels is regulated by the sequential expression of IL-7 and lymphotoxin alpha1beta2 in newly formed tertiary lymphoid structures. J Immunol 197:1957–1967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Jamieson T, Cook DN, Nibbs RJ et al (2005) The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 6:403–411

    Article  PubMed  CAS  Google Scholar 

  97. Podgrabinska S, Kamalu O, Mayer L et al (2009) Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via Mac-1/ICAM-1-dependent mechanism. J Immunol 183:1767–1779

    Article  PubMed  CAS  Google Scholar 

  98. Thaunat O, Kerjaschki D, Nicoletti A et al (2006) Is defective lymphatic drainage a trigger for lymphoid neogenesis? Trends Immunol 27:441–445

    Article  PubMed  CAS  Google Scholar 

  99. Burman A, Haworth O, Bradfield P et al (2005) The role of leukocyte-stromal interactions in chronic inflammatory joint disease. Joint Bone Spine 72:10–16

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kerjaschki D, Regele HM, Moosberger I et al (2004) Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol 15:603–612

    Article  PubMed  CAS  Google Scholar 

  101. von der Weid PY, Rehal S, Ferraz JG (2011) Role of the lymphatic system in the pathogenesis of Crohn's disease. Curr Opin Gastroenterol 27:335–341

    Article  PubMed  CAS  Google Scholar 

  102. Kajiya K, Detmar M (2006) An important role of lymphatic vessels in the control of UVB-induced edema formation and inflammation. J Invest Dermatol 126:919–921

    Article  PubMed  CAS  Google Scholar 

  103. Wilkinson LS, Edwards JC (1991) Demonstration of lymphatics in human synovial tissue. Rheumatol Int 11:151–155

    Article  PubMed  CAS  Google Scholar 

  104. Cordeiro OG, Chypre M, Brouard N et al (2016) Integrin-alpha IIb identifies murine lymph node lymphatic endothelial cells responsive to RANKL. PLoS One 11:e0151848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Yang CY, Vogt TK, Favre S et al (2014) Trapping of naive lymphocytes triggers rapid growth and remodeling of the fibroblast network in reactive murine lymph nodes. Proc Natl Acad Sci U S A 111:E109–E118

    Article  PubMed  CAS  Google Scholar 

  106. Theander E, Vasaitis L, Baecklund E et al (2011) Lymphoid organisation in labial salivary gland biopsies is a possible predictor for the development of malignant lymphoma in primary Sjogren's syndrome. Ann Rheum Dis 70(8):1363

    Article  PubMed  Google Scholar 

  107. Hu D, Mohanta SK, Yin C et al (2015) Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin beta receptors. Immunity 42:1100–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Barone F, Campos J, Bowman S, Fisher BA (2015) The value of histopathological examination of salivary gland biopsies in diagnosis, prognosis and treatment of Sjogren's syndrome. Swiss Med Wkly 145:w14168

    PubMed  Google Scholar 

Download references

Acknowledgments

F.B. is an ARUK Senior Fellow and is part of the NIHR Birmingham Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Barone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mueller, C.G., Nayar, S., Gardner, D., Barone, F. (2018). Cellular and Vascular Components of Tertiary Lymphoid Structures. In: Dieu-Nosjean, MC. (eds) Tertiary Lymphoid Structures. Methods in Molecular Biology, vol 1845. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8709-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8709-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8708-5

  • Online ISBN: 978-1-4939-8709-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics