Skip to main content

Understanding Influenza

  • Protocol
  • First Online:
Influenza Virus

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1836))

Abstract

Influenza, a serious illness of humans and domesticated animals, has been studied intensively for many years. It therefore provides an example of how much we can learn from detailed studies of an infectious disease and of how even the most intensive scientific research leaves further questions to answer. This introduction is written for researchers who have become interested in one of these unanswered questions, but who may not have previously worked on influenza. To investigate these questions, researchers must not only have a firm grasp of relevant methods and protocols; they must also be familiar with the basic details of our current understanding of influenza. This article therefore briefly covers the burden of disease that has driven influenza research, summarizes how our thinking about influenza has evolved over time, and sets out key features of influenza viruses by discussing how we classify them and what we understand of their replication. It does not aim to be comprehensive, as any researcher will read deeply into the specific areas that have grasped their interest. Instead, it aims to provide a general summary of how we came to think about influenza in the way we do now, in the hope that the reader’s own research will help us to understand it better.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nee S, Smith JM (1990) The evolutionary biology of molecular parasites. Parasitology 100(Suppl):S5–S18

    Article  PubMed  Google Scholar 

  2. Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc London B Biol Sci 147(927):258–267

    Article  CAS  Google Scholar 

  3. Isaacs A, Lindenmann J, Valentine RC (1957) Virus interference. II. Some properties of interferon. Proc R Soc London B Biol Sci 147(927):268–273

    Article  CAS  Google Scholar 

  4. Jensen KE, Davenport FM, Hennessy AV, Francis T Jr (1956) Characterization of influenza antibodies by serum absorption. J Exp Med 104(2):199–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Davenport FM, Hennessy AV, Francis T Jr (1953) Epidemiologic and immunologic significance of age distribution of antibody to antigenic variants of influenza virus. J Exp Med 98(6):641–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang P, Palese P, O'Neill RE (1997) The NPI-1/NPI-3 (karyopherin alpha) binding site on the influenza a virus nucleoprotein NP is a nonconventional nuclear localization signal. J Virol 71(3):1850–1856

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Shinya K, Ebina M, Yamada S, Ono M, Kasai N, Kawaoka Y (2006) Avian flu: influenza virus receptors in the human airway. Nature 440(7083):435–436. https://doi.org/10.1038/440435a

    Article  PubMed  CAS  Google Scholar 

  8. Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44(6):959–968

    Article  CAS  PubMed  Google Scholar 

  9. Benson RA, Lawton JC, MacLeod MK (2017) T cell response in the lung following influenza virus infection. Methods Mol Biol 1591:235–248. https://doi.org/10.1007/978-1-4939-6931-9_17

    Article  PubMed  CAS  Google Scholar 

  10. Field J, Nikawa J, Broek D, MacDonald B, Rodgers L, Wilson IA, Lerner RA, Wigler M (1988) Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol Cell Biol 8(5):2159–2165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carrat F, Vergu E, Ferguson NM, Lemaitre M, Cauchemez S, Leach S, Valleron AJ (2008) Time lines of infection and disease in human influenza: a review of volunteer challenge studies. Am J Epidemiol 167(7):775–785. https://doi.org/10.1093/aje/kwm375

    Article  PubMed  Google Scholar 

  12. Hirve S, Newman LP, Paget J, Azziz-Baumgartner E, Fitzner J, Bhat N, Vandemaele K, Zhang W (2016) Influenza seasonality in the tropics and subtropics - when to vaccinate? PLoS One 11(4):e0153003. https://doi.org/10.1371/journal.pone.0153003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Lemaitre M, Carrat F (2010) Comparative age distribution of influenza morbidity and mortality during seasonal influenza epidemics and the 2009 H1N1 pandemic. BMC Infect Dis 10:162. https://doi.org/10.1186/1471-2334-10-162

    Article  PubMed  PubMed Central  Google Scholar 

  14. Taubenberger JK, Morens DM (2006) 1918 influenza: the mother of all pandemics. Emerg Infect Dis 12(1):15–22. https://doi.org/10.3201/eid1201.050979

    Article  PubMed  PubMed Central  Google Scholar 

  15. Office C (2017) National risk register of civil emergencies – 2017 edition. https://www.gov.uk/government/publications/national-risk-register-of-civil-emergencies-2017-edition

  16. Morens DM, Taubenberger JK (2010) Historical thoughts on influenza viral ecosystems, or behold a pale horse, dead dogs, failing fowl, and sick swine. Influenza Other Respir Viruses 4(6):327–337. https://doi.org/10.1111/j.1750-2659.2010.00148.x

    Article  PubMed  PubMed Central  Google Scholar 

  17. Daly JM, MacRae S, Newton JR, Wattrang E, Elton DM (2011) Equine influenza: a review of an unpredictable virus. Vet J 189(1):7–14. https://doi.org/10.1016/j.tvjl.2010.06.026

    Article  PubMed  Google Scholar 

  18. Vincent A, Awada L, Brown I, Chen H, Claes F, Dauphin G, Donis R, Culhane M, Hamilton K, Lewis N, Mumford E, Nguyen T, Parchariyanon S, Pasick J, Pavade G, Pereda A, Peiris M, Saito T, Swenson S, Van Reeth K, Webby R, Wong F, Ciacci-Zanella J (2014) Review of influenza A virus in swine worldwide: a call for increased surveillance and research. Zoonoses Public Health 61(1):4–17. https://doi.org/10.1111/zph.12049

    Article  PubMed  CAS  Google Scholar 

  19. Francis T Jr (1953) Influenza: the new acquaintance. Ann Intern Med 39(2):203–221

    Article  PubMed  Google Scholar 

  20. Honigsbaum M (2014) Pre-modern influenza. In: A history of the great influenza pandemics: death, panic and hysteria 1890–1920. I.B. Taurus & Co Ltd., London, pp 13–31

    Google Scholar 

  21. Lowen AC, Steel J (2014) Roles of humidity and temperature in shaping influenza seasonality. J Virol 88(14):7692–7695. https://doi.org/10.1128/JVI.03544-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Taubenberger JK, Hultin JV, Morens DM (2007) Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir Ther 12(4 Pt B):581–591

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Honigsbaum M (2014) ‘An epidemic started by telegraph’: news, sensation and science. In: A history of the great influenza pandemics: death, panic and hysteria 1890–1920. I.B. Taurus & Co Ltd., London, pp 32–81

    Google Scholar 

  24. Honigsbaum M (2014) ‘An inexpressible dread’: influenza, nervousness and psychosis. In: A history of the great influenza pandemics: death, panic and hysteria 1890–1920. I.B. Taurus & Co Ltd., London, pp 82–117

    Google Scholar 

  25. Morens DM, Taubenberger JK, Fauci AS (2008) Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J Infect Dis 198(7):962–970. https://doi.org/10.1086/591708

    Article  PubMed  PubMed Central  Google Scholar 

  26. McCullers JA (2014) The co-pathogenesis of influenza viruses with bacteria in the lung. Nat Rev Microbiol 12(4):252–262. https://doi.org/10.1038/nrmicro3231

    Article  PubMed  CAS  Google Scholar 

  27. Radetsky P (1991) The invisible invaders: the story of the emerging age of viruses. Little, Brown & Company, USA

    Google Scholar 

  28. Shope RE (1931) Swine influenza: III. Filtration experiments and etiology. J Exp Med 54(3):373–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dochez AR, Mills KC, Kneeland Y (1933) Studies of the etiology of influenza. Proc Soc Exp Biol Med 30(8):1017–1022

    Article  Google Scholar 

  30. Smith W, Andrewes CH, Laidlaw PP (1933) A virus obtained from influenza patients. Lancet 2:66–68

    Article  Google Scholar 

  31. Boos J, August MJ (2013) Of mice and men: animal models of viral infection. In: To catch a virus. ASM Press, Washington, DC, pp 23–50

    Chapter  Google Scholar 

  32. Gaush CR, Smith TF (1968) Replication and plaque assay of influenza virus in an established line of canine kidney cells. Appl Microbiol 16(4):588–594

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Gaush CR, Hard WL, Smith TF (1966) Characterization of an established line of canine kidney cells (MDCK). Proc Soc Exp Biol Med 122(3):931–935

    Article  CAS  PubMed  Google Scholar 

  34. Green IJ (1962) Serial propagation of influenza B (Lee) virus in a transmissible line of canine kidney cells. Science 138(3536):42–43

    Article  CAS  PubMed  Google Scholar 

  35. Adams MJ, Lefkowitz EJ, King AMQ, Harrach B, Harrison RL, Knowles NJ, Kropinski AM, Krupovic M, Kuhn JH, Mushegian AR, Nibert M, Sabanadzovic S, Sanfacon H, Siddell SG, Simmonds P, Varsani A, Zerbini FM, Gorbalenya AE, Davison AJ (2017) Changes to taxonomy and the international code of virus classification and nomenclature ratified by the international committee on taxonomy of viruses (2017). Arch Virol 162(8):2505–2538. https://doi.org/10.1007/s00705-017-3358-5

    Article  PubMed  CAS  Google Scholar 

  36. Andrewes CH, Bang FB, Burnet FM (1955) A short description of the myxovirus group (influenza and related viruses). Virology 1(2):176–184

    Article  CAS  PubMed  Google Scholar 

  37. Burnet FM (1951) Mucoproteins in relation to virus action. Physiol Rev 31(2):131–150

    Article  CAS  PubMed  Google Scholar 

  38. Hirst GK (1941) The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus. Science 94(2427):22–23. https://doi.org/10.1126/science.94.2427.22

    Article  PubMed  CAS  Google Scholar 

  39. Waterson AP (1962) Two kinds of myxovirus. Nature 193:1163–1164

    Article  CAS  PubMed  Google Scholar 

  40. A revision of the system of nomenclature for influenza viruses: a WHO memorandum (1980). Bull World Health Organ 58(4):585–591

    Google Scholar 

  41. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56(1):152–179

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Horm VS, Gutierrez RA, Nicholls JM, Buchy P (2012) Highly pathogenic influenza A(H5N1) virus survival in complex artificial aquatic biotopes. PLoS One 7(4):e34160. https://doi.org/10.1371/journal.pone.0034160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, Recuenco S, Ellison JA, Davis CT, York IA, Turmelle AS, Moran D, Rogers S, Shi M, Tao Y, Weil MR, Tang K, Rowe LA, Sammons S, Xu X, Frace M, Lindblade KA, Cox NJ, Anderson LJ, Rupprecht CE, Donis RO (2012) A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A 109(11):4269–4274. https://doi.org/10.1073/pnas.1116200109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, Chen LM, Johnson A, Tao Y, Dreyfus C, Yu W, McBride R, Carney PJ, Gilbert AT, Chang J, Guo Z, Davis CT, Paulson JC, Stevens J, Rupprecht CE, Holmes EC, Wilson IA, Donis RO (2013) New world bats harbor diverse influenza A viruses. PLoS Pathog 9(10):e1003657. https://doi.org/10.1371/journal.ppat.1003657

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Wang M, Veit M (2016) Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein Cell 7(1):28–45. https://doi.org/10.1007/s13238-015-0193-x

    Article  PubMed  CAS  Google Scholar 

  46. Hause BM, Ducatez M, Collin EA, Ran Z, Liu R, Sheng Z, Armien A, Kaplan B, Chakravarty S, Hoppe AD, Webby RJ, Simonson RR, Li F (2013) Isolation of a novel swine influenza virus from Oklahoma in 2011 which is distantly related to human influenza C viruses. PLoS Pathog 9(2):e1003176. https://doi.org/10.1371/journal.ppat.1003176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Ferguson L, Olivier AK, Genova S, Epperson WB, Smith DR, Schneider L, Barton K, McCuan K, Webby RJ, Wan XF (2016) Pathogenesis of influenza D virus in cattle. J Virol 90(12):5636–5642. https://doi.org/10.1128/JVI.03122-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. White SK, Ma W, McDaniel CJ, Gray GC, Lednicky JA (2016) Serologic evidence of exposure to influenza D virus among persons with occupational contact with cattle. J Clin Virol 81:31–33. https://doi.org/10.1016/j.jcv.2016.05.017

    Article  PubMed  Google Scholar 

  49. Hutchinson EC, Charles PD, Hester SS, Thomas B, Trudgian D, Martinez-Alonso M, Fodor E (2014) Conserved and host-specific features of influenza virion architecture. Nat Commun 5:4816. https://doi.org/10.1038/ncomms5816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Rota PA, Wallis TR, Harmon MW, Rota JS, Kendal AP, Nerome K (1990) Cocirculation of two distinct evolutionary lineages of influenza type B virus since 1983. Virology 175(1):59–68

    Article  CAS  PubMed  Google Scholar 

  51. Dudas G, Bedford T, Lycett S, Rambaut A (2015) Reassortment between influenza B lineages and the emergence of a coadapted PB1-PB2-HA gene complex. Mol Biol Evol 32(1):162–172. https://doi.org/10.1093/molbev/msu287

    Article  PubMed  CAS  Google Scholar 

  52. Vijaykrishna D, Holmes EC, Joseph U, Fourment M, Su YC, Halpin R, Lee RT, Deng YM, Gunalan V, Lin X, Stockwell TB, Fedorova NB, Zhou B, Spirason N, Kuhnert D, Boskova V, Stadler T, Costa AM, Dwyer DE, Huang QS, Jennings LC, Rawlinson W, Sullivan SG, Hurt AC, Maurer-Stroh S, Wentworth DE, Smith GJ, Barr IG (2015) The contrasting phylodynamics of human influenza B viruses. elife 4:e05055. https://doi.org/10.7554/eLife.05055

    Article  PubMed  PubMed Central  Google Scholar 

  53. Brooke CB (2017) Population diversity and collective interactions during influenza virus infection. J Virol 91(22):e01164. https://doi.org/10.1128/JVI.01164-17

    Article  PubMed  PubMed Central  Google Scholar 

  54. Kilbourne ED (1968) Recombination of influenza a viruses of human and animal origin. Science 160(3823):74–76. https://doi.org/10.1126/science.160.3823.74

    Article  Google Scholar 

  55. Kilbourne ED (1969) Future influenza vaccines and the use of genetic recombinants. Bull World Health Organ 41(3):643–645

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Blazejewska P, Koscinski L, Viegas N, Anhlan D, Ludwig S, Schughart K (2011) Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology 412(1):36–45. https://doi.org/10.1016/j.virol.2010.12.047

    Article  PubMed  CAS  Google Scholar 

  57. Stuart-Harris CH (1939) A neurotropic strain of human influenza virus. Lancet 1:497–499

    Article  Google Scholar 

  58. Schulman JL, Palese P (1977) Virulence factors of influenza A viruses: WSN virus neuraminidase required for plaque production in MDBK cells. J Virol 24(1):170–176

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Goto H, Kawaoka Y (1998) A novel mechanism for the acquisition of virulence by a human influenza A virus. Proc Natl Acad Sci U S A 95(17):10224–10228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Goto H, Wells K, Takada A, Kawaoka Y (2001) Plasminogen-binding activity of neuraminidase determines the pathogenicity of influenza A virus. J Virol 75(19):9297–9301. https://doi.org/10.1128/JVI.75.19.9297-9301.2001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Sun X, Tse LV, Ferguson AD, Whittaker GR (2010) Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J Virol 84(17):8683–8690. https://doi.org/10.1128/JVI.00797-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kilbourn ED, Schulman JL, Schild GC, Schloer G, Swanson J, Bucher D (1971) Correlated studies of a recombinant influenza-virus vaccine. 1. Derivation and characterization of virus and vaccine. J Infect Dis 124(5):449–462. https://doi.org/10.1093/infdis/124.5.449

    Article  Google Scholar 

  63. Hutchinson EC, Fodor E (2013) Transport of the influenza virus genome from nucleus to nucleus. Viruses 5(10):2424–2446. https://doi.org/10.3390/v5102424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Webster RG, Yakhno M, Hinshaw VS, Bean WJ, Murti KG (1978) Intestinal influenza: replication and characterization of influenza viruses in ducks. Virology 84(2):268–278

    Article  CAS  PubMed  Google Scholar 

  65. Ciminski K, Thamamongood T, Zimmer G, Schwemmle M (2017) Novel insights into bat influenza A viruses. J Gen Virol 98(10):2393–2400. https://doi.org/10.1099/jgv.0.000927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Rogers GN, Paulson JC (1983) Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127(2):361–373

    Article  CAS  PubMed  Google Scholar 

  67. Ito T, Couceiro JN, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72(9):7367–7373

    PubMed  PubMed Central  CAS  Google Scholar 

  68. Lakadamyali M, Rust MJ, Babcock HP, Zhuang X (2003) Visualizing infection of individual influenza viruses. Proc Natl Acad Sci U S A 100(16):9280–9285. https://doi.org/10.1073/pnas.0832269100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Huotari J, Helenius A (2011) Endosome maturation. EMBO J 30(17):3481–3500. https://doi.org/10.1038/emboj.2011.286

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Stauffer S, Feng Y, Nebioglu F, Heilig R, Picotti P, Helenius A (2014) Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J Virol 88(22):13029–13046. https://doi.org/10.1128/JVI.01430-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lan Y, Zhang Y, Dong L, Wang D, Huang W, Xin L, Yang L, Zhao X, Li Z, Wang W, Li X, Xu C, Yang L, Guo J, Wang M, Peng Y, Gao Y, Guo Y, Wen L, Jiang T, Shu Y (2010) A comprehensive surveillance of adamantane resistance among human influenza A virus isolated from mainland China between 1956 and 2009. Antivir Ther 15(6):853–859. https://doi.org/10.3851/IMP1656

    Article  PubMed  CAS  Google Scholar 

  72. Nelson MI, Simonsen L, Viboud C, Miller MA, Holmes EC (2009) The origin and global emergence of adamantane resistant A/H3N2 influenza viruses. Virology 388(2):270–278. https://doi.org/10.1016/j.virol.2009.03.026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. White J, Kartenbeck J, Helenius A (1982) Membrane fusion activity of influenza virus. EMBO J 1(2):217–222

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Su WC, Chen YC, Tseng CH, Hsu PW, Tung KF, Jeng KS, Lai MM (2013) Pooled RNAi screen identifies ubiquitin ligase itch as crucial for influenza A virus release from the endosome during virus entry. Proc Natl Acad Sci U S A 110(43):17516–17521. https://doi.org/10.1073/pnas.1312374110

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gschweitl M, Ulbricht A, Barnes CA, Enchev RI, Stoffel-Studer I, Meyer-Schaller N, Huotari J, Yamauchi Y, Greber UF, Helenius A, Peter M (2016) A SPOPL/Cullin-3 ubiquitin ligase complex regulates endocytic trafficking by targeting EPS15 at endosomes. elife 5:e13841. https://doi.org/10.7554/eLife.13841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Banerjee I, Miyake Y, Nobs SP, Schneider C, Horvath P, Kopf M, Matthias P, Helenius A, Yamauchi Y (2014) Influenza A virus uses the aggresome processing machinery for host cell entry. Science 346(6208):473–477. https://doi.org/10.1126/science.1257037

    Article  PubMed  CAS  Google Scholar 

  77. Rudnicka A, Yamauchi Y (2016) Ubiquitin in influenza virus entry and innate immunity. Viruses 8(10). https://doi.org/10.3390/v8100293

  78. Eisfeld AJ, Neumann G, Kawaoka Y (2015) At the centre: influenza A virus ribonucleoproteins. Nat Rev Microbiol 13(1):28–41. https://doi.org/10.1038/nrmicro3367

    Article  PubMed  CAS  Google Scholar 

  79. Fodor E (2013) The RNA polymerase of influenza a virus: mechanisms of viral transcription and replication. Acta Virol 57(2):113–122

    Article  CAS  PubMed  Google Scholar 

  80. Hale BG, Albrecht RA, Garcia-Sastre A (2010) Innate immune evasion strategies of influenza viruses. Future Microbiol 5(1):23–41. https://doi.org/10.2217/fmb.09.108

    Article  PubMed  PubMed Central  Google Scholar 

  81. Weber-Gerlach M, Weber F (2016) To conquer the host, influenza virus is packing it in: interferon-antagonistic strategies beyond NS1. J Virol 90(19):8389–8394. https://doi.org/10.1128/JVI.00041-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Kash JC, Tumpey TM, Proll SC, Carter V, Perwitasari O, Thomas MJ, Basler CF, Palese P, Taubenberger JK, Garcia-Sastre A, Swayne DE, Katze MG (2006) Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443(7111):578–581. https://doi.org/10.1038/nature05181

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhou J, Wang D, Gao R, Zhao B, Song J, Qi X, Zhang Y, Shi Y, Yang L, Zhu W, Bai T, Qin K, Lan Y, Zou S, Guo J, Dong J, Dong L, Zhang Y, Wei H, Li X, Lu J, Liu L, Zhao X, Li X, Huang W, Wen L, Bo H, Xin L, Chen Y, Xu C, Pei Y, Yang Y, Zhang X, Wang S, Feng Z, Han J, Yang W, Gao GF, Wu G, Li D, Wang Y, Shu Y (2013) Biological features of novel avian influenza A (H7N9) virus. Nature 499(7459):500–503. https://doi.org/10.1038/nature12379

    Article  PubMed  CAS  Google Scholar 

  84. Bruce EA, Digard P, Stuart AD (2010) The Rab11 pathway is required for influenza A virus budding and filament formation. J Virol 84(12):5848–5859. https://doi.org/10.1128/JVI.00307-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Amorim MJ, Bruce EA, Read EK, Foeglein A, Mahen R, Stuart AD, Digard P (2011) A Rab11- and microtubule-dependent mechanism for cytoplasmic transport of influenza A virus viral RNA. J Virol 85(9):4143–4156. https://doi.org/10.1128/JVI.02606-10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Momose F, Sekimoto T, Ohkura T, Jo S, Kawaguchi A, Nagata K, Morikawa Y (2011) Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome. PLoS One 6(6):e21123. https://doi.org/10.1371/journal.pone.0021123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Eisfeld AJ, Kawakami E, Watanabe T, Neumann G, Kawaoka Y (2011) RAB11A is essential for transport of the influenza virus genome to the plasma membrane. J Virol 85(13):6117–6126. https://doi.org/10.1128/JVI.00378-11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. de Castro Martin IF, Fournier G, Sachse M, Pizarro-Cerda J, Risco C, Naffakh N (2017) Influenza virus genome reaches the plasma membrane via a modified endoplasmic reticulum and Rab11-dependent vesicles. Nat Commun 8(1):1396. https://doi.org/10.1038/s41467-017-01557-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vale-Costa S, Alenquer M, Sousa AL, Kellen B, Ramalho J, Tranfield EM, Amorim MJ (2016) Influenza A virus ribonucleoproteins modulate host recycling by competing with Rab11 effectors. J Cell Sci 129(8):1697–1710. https://doi.org/10.1242/jcs.188409

    Article  PubMed  CAS  Google Scholar 

  90. Hengrung N, El Omari K, Serna Martin I, Vreede FT, Cusack S, Rambo RP, Vonrhein C, Bricogne G, Stuart DI, Grimes JM, Fodor E (2015) Crystal structure of the RNA-dependent RNA polymerase from influenza C virus. Nature 527(7576):114–117. https://doi.org/10.1038/nature15525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Thierry E, Guilligay D, Kosinski J, Bock T, Gaudon S, Round A, Pflug A, Hengrung N, El Omari K, Baudin F, Hart DJ, Beck M, Cusack S (2016) Influenza polymerase can adopt an alternative configuration involving a radical repacking of PB2 domains. Mol Cell 61(1):125–137. https://doi.org/10.1016/j.molcel.2015.11.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Reich S, Guilligay D, Pflug A, Malet H, Berger I, Crepin T, Hart D, Lunardi T, Nanao M, Ruigrok RW, Cusack S (2014) Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature 516(7531):361–366. https://doi.org/10.1038/nature14009

    Article  PubMed  CAS  Google Scholar 

  93. Pflug A, Guilligay D, Reich S, Cusack S (2014) Structure of influenza A polymerase bound to the viral RNA promoter. Nature 516(7531):355–360. https://doi.org/10.1038/nature14008

    Article  PubMed  CAS  Google Scholar 

  94. Dadonaite B, Vijayakrishnan S, Fodor E, Bhella D, Hutchinson EC (2016) Filamentous influenza viruses. J Gen Virol 97(8):1755–1764. https://doi.org/10.1099/jgv.0.000535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Rolfes M, Foppa I, Garg S, Flannery B, Brammer L, James A. Singleton (2016) Estimated influenza illnesses, medical visits, hospitalizations, and deaths averted by vaccination in the United States. https://www.cdc.gov/flu/about/disease/2015-16.htm. Accessed 8 Dec 2017

  96. The 20th Century Mortality Files (2011) https://data.gov.uk/dataset/the_20th_century_mortality_files. Accessed 7 Nov 2017

  97. The 21st century mortality files - deaths dataset, England and Wales (2017) https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/deaths/datasets/the21stcenturymortalityfilesdeathsdataset. Accessed 12 Oct 2017

  98. The 21st century mortality files - population dataset, England and Wales (2017) https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/datasets/the21stcenturymortalityfilespopulationdataset. Accessed 12 Oct 2017

  99. Vijayakrishnan S, Loney C, Jackson D, Suphamungmee W, Rixon FJ, Bhella D (2013) Cryotomography of budding influenza a virus reveals filaments with diverse morphologies that mostly do not bear a genome at their distal end. PLoS Pathog 9(6):e1003413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Long JC, Fodor E (2016) The PB2 subunit of the influenza a virus RNA polymerase is imported into the mitochondrial matrix. J Virol 90(19):8729–8738. https://doi.org/10.1128/JVI.01384-16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward C. Hutchinson or Yohei Yamauchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hutchinson, E.C., Yamauchi, Y. (2018). Understanding Influenza. In: Yamauchi, Y. (eds) Influenza Virus. Methods in Molecular Biology, vol 1836. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8678-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8678-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8677-4

  • Online ISBN: 978-1-4939-8678-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics