Skip to main content

Structural Variant Breakpoint Detection with novoBreak

  • Protocol
  • First Online:
Copy Number Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1833))

Abstract

Structural variations (SVs) are an important type of genomic variants and always play a critical role for cancer development and progression. In the cancer genomics era, detecting structural variations from short sequencing data is still challenging. We developed a novel algorithm, novoBreak (Chong et al. Nat Methods 14:65–67, 2017), which achieved the highest balanced accuracy (mean of sensitivity and precision) in the ICGC-TCGA DREAM 8.5 Somatic Mutation Calling Challenge. Here we describe detailed instructions of applying novoBreak (https://github.com/czc/nb_distribution), an open-source software, for somatic SVs detection. We also briefly introduce how to detect germline SVs using novoBreak pipeline and how to use the Workflow (https://cgc.sbgenomics.com/public/apps#ZCHONG/novobreak-commit/novobreak-analysis/) of novoBreak on the Seven Bridges Cancer Genomics Cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kloosterman WP, Francioli LC, Hormozdiari F et al (2015) Characteristics of de novo structural changes in the human genome. Genome Res 25:792–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berger MF, Lawrence MS, Demichelis F et al (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hillmer AM, Yao F, Inaki K et al (2011) Comprehensive long-span paired-end-tag mapping reveals characteristic patterns of structural variations in epithelial cancer genomes. Genome Res 21:665–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mertens F, Johansson B, Fioretos T, Mitelman F (2015) The emerging complexity of gene fusions in cancer. Nat Rev Cancer 15:371–381

    Article  CAS  PubMed  Google Scholar 

  6. Chen K, Wallis JW, McLellan MD et al (2009) BreakDancer: an algorithm for high-resolution mapping of genomic structural variation. Nat Methods 6:677–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hormozdiari F, Alkan C, Eichler EE, Sahinalp SC (2009) Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes. Genome Res 19:1270–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abyzov A, Urban AE, Snyder M, Gerstein M (2011) CNVnator: an approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res 21:974–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ye K, Schulz MH, Long Q et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hajirasouliha I, Hormozdiari F, Alkan C et al (2010) Detection and characterization of novel sequence insertions using paired-end next-generation sequencing. Bioinformatics 26:1277–1283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rausch T, Zichner T, Schlattl A et al (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen K, Chen L, Fan X et al (2014) TIGRA: a targeted iterative graph routing assembler for breakpoint assembly. Genome Res 24:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Medvedev P, Stanciu M, Brudno M (2009) Computational methods for discovering structural variation with next-generation sequencing. Nat Methods 6:S13–S20

    Article  CAS  PubMed  Google Scholar 

  15. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li Y, Zheng H, Luo R et al (2011) Structural variation in two human genomes mapped at single-nucleotide resolution by whole genome de novo assembly. Nat Biotechnol 29:723–730

    Article  CAS  PubMed  Google Scholar 

  18. Earl D, Bradnam K, John JS, Darling A, Lin D, Fass J, Yu HOK, Buffalo V, Zerbino DR, Diekhans M et al (2011) Assemblathon 1: A competitive assessment of de novo short read assembly methods. Genome Res 21:2224–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chong Z, Ruan J, Gao M et al (2017) novoBreak: local assembly for breakpoint detection in cancer genomes. Nat Methods 14:65–67

    Article  CAS  PubMed  Google Scholar 

  20. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:1303.3997 [q-bio.GN]

    Google Scholar 

  21. Warren RL, Sutton GG, Jones SJM, Holt RA (2007) Assembling millions of short DNA sequences using SSAKE. Bioinformatics 23:500–501

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zechen Chong or Ken Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chong, Z., Chen, K. (2018). Structural Variant Breakpoint Detection with novoBreak. In: Bickhart, D. (eds) Copy Number Variants. Methods in Molecular Biology, vol 1833. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8666-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8666-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8665-1

  • Online ISBN: 978-1-4939-8666-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics