Skip to main content

Imaging Newly Synthesized and Old Histone Variant Dynamics Dependent on Chaperones Using the SNAP-Tag System

  • Protocol
  • First Online:
Histone Variants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1832))

Abstract

Distinct histone variants mark chromatin domains in the nucleus. To understand how these marks are established and maintained, one has to decipher how the dynamic distribution of these variants is orchestrated. These dynamics are associated with all DNA-based processes such as DNA replication, repair, transcription, heterochromatin formation and chromosome segregation. Key factors, known as histone chaperones, have been involved in escorting histones, thereby contributing to the chromatin landscape of given cell types. SNAP-tag-based imaging system enables the distinction between old and newly deposited histones, and has proved to be a powerful method for the visualization of histone variant dynamics on a cell-by-cell basis. This approach enables the tracking of specific variants in vivo and defining their timing and mode of deposition throughout the cell cycle and in different nuclear territories. Here, we provide a detailed protocol to exploit the SNAP-tag technology to assess the dynamics of newly synthesized and old histones. We then show that combining the SNAP-tagging of histones with the knockdown of candidate factors, represents an effective approach to decipher the role of key actors in guiding histone dynamics. Here, we specifically illustrate how this strategy was used to identify the essential role of the chaperone HIRA in deposition of newly synthesized histone variant H3.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg RD (1974) Chromatin structure: a repeating unit of histones and DNA. Science 184(4139):868–871

    Article  CAS  PubMed  Google Scholar 

  2. Oudet P, Gross-Bellard M, Chambon P (1975) Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4(4):281–300

    Article  CAS  PubMed  Google Scholar 

  3. Palmer DK, O'Day K, Trong HL et al (1991) Purification of the centromere-specific protein CENP-A and demonstration that it is a distinctive histone. PNAS 88:3734–3738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gurard-Levin ZA, Almouzni G (2014) Histone modifications and a choice of variant: a language that helps the genome express itself. F1000Prime Reports 6:76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Malik H, Henikoff S (2003) Phylogenomics of the nucleosome. Nat Struct Biol 10:882–891. https://doi.org/10.1038/nsb996

    Article  PubMed  CAS  Google Scholar 

  6. Allshire RC, Karpen GH (2008) Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Gen 9(12):923–937. https://doi.org/10.1038/nrg2466

    Article  CAS  Google Scholar 

  7. Black BE, Bassett EA (2008) The histone variant CENP-A and centromere specification. Curr Opin Cell Bio 20(1):91–100. https://doi.org/10.1016/j.ceb.2007.11.007

    Article  CAS  Google Scholar 

  8. Tagami H, Ray-Gallet D, Almouzni G et al. (2004) Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 9;116(1):51–61, 116

    Google Scholar 

  9. Goldberg D, Banaszynski LA, Noh KM et al (2010) Distinct factors control histone variant H3.3 localization at specific genomic regions. Cell 140(5):678–691. https://doi.org/10.1016/j.cell.2010.01.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ray-Gallet D, Woolfe A, Vassias I et al (2011) Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol Cell Biol 22(3):874–885. https://doi.org/10.1128/MCB.22.3.874-885.2002

    Article  CAS  Google Scholar 

  11. Mito Y, Henikoff JG, Henikoff S (2005) Genome-scale profiling of histone H3.3 replacement patterns. Nat Gen 37(10):1090–1097

    Article  CAS  Google Scholar 

  12. Mito Y, Henikoff JG, Henikoff S (2007) Histone replacement marks the boundaries of cis-regulatory domains. Science 315(5817):1408–1411

    Article  CAS  PubMed  Google Scholar 

  13. Drané P, Ouararhni K, Depaux A et al (2010) The death-associated protein DAXX is a novel histone chaperone involved in the replication-independent deposition of H3.3. Genes Dev 24(12):1253–1265. https://doi.org/10.1101/gad.566910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Wong LH, McGhie JD, Sim M et al (2010) ATRX interacts with H3.3 in maintaining telomere structural integrity in pluripotent embryonic stem cells. Genome Res 20(3):351–360. https://doi.org/10.1101/gr.101477.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. De Koning L, Corpet A, Haber JE, Almouzni G (2007) Histone chaperones: an escort network regulating histone traffic. Nat Struc Mol Biol 14(11):997–1007

    Article  CAS  Google Scholar 

  16. Ray-Gallet D, Almouzni G (2010) Nucleosome dynamics and histone variants. Essays Biochem 48(1):75–87. https://doi.org/10.1042/bse0480075

    Article  PubMed  CAS  Google Scholar 

  17. Dunleavy EM, Roche D, Tagami H et al (2009) HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 37(3):485–497. https://doi.org/10.1016/j.cell.2009.02.040

    Article  CAS  Google Scholar 

  18. Kimura A, Umehara T, Horikoshi M (2002) Chromosomal gradient of histone acetylation established by Sas2p and Sir2p functions as a shield against gene silencing. Nat Genet 32:370–377. https://doi.org/10.1038/ng993

    Article  PubMed  Google Scholar 

  19. Meshorer E, Misteli T (2006) Chromatin in pluripotent embryonic stem cells and differentiation. Nat Rev Mol Cell Biol 7:540–546. https://doi.org/10.1038/nrm1938

    Article  PubMed  CAS  Google Scholar 

  20. Jansen JE, Black BE, Foltz DR, Cleveland DW (2007) Propagation of centromeric chromatin requires exit from mitosis. J Cell Biol 176(6):795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clémént C, Vassias I, Ray-Gallet D, Almouzni G (2016) Functional characterization of histone chaperones using SNAP-tag-based imaging to asses de novo deposition. Methods Enzymol 573:97–117

    Article  CAS  PubMed  Google Scholar 

  22. Martini E, Roche DM, Marheineke K et al (1998) Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J Cell Biol 143:563–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gautier A, Juillerat A, Heinis C et al (2008) An engineered protein tag for multiprotein labeling in living cells. Chem Biol 15(2):128–136. https://doi.org/10.1016/j.chembiol.2008.01.007

    Article  PubMed  CAS  Google Scholar 

  24. Shah JV, Botvinick E, Bonday Z et al (2004) Dynamics of centromere and kinetochore proteins; implications for checkpoint signaling and silencing. Curr Biol 14:942–952

    PubMed  CAS  Google Scholar 

  25. Loyola A, Bonaldi T, Roche D et al (2006) PTMs on H3 variants before chromatin assembly potentiate their final epigenetic state. Mol Cell 24:309–316

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Shauna Katz for critical reading of the manuscript, Patricia Le Baccon and the PICT-IBiSA@Pasteur Imaging Facility, as well as all members of the Chromatin Dynamics team for stimulating discussions. This work was supported by la Ligue Nationale contre le Cancer (Equipe labellisée Ligue), ANR-11-LABX-0044_DEEP and ANR-10-IDEX-0001-02 PSL, ANR-12-BSV5-0022-02 "CHAPINHIB", ANR-14-CE16-0009 "Epicure", ANR-14-CE10-0013 "CELLECTCHIP", EU project 678563 "EPOCH28", ERC-2015-ADG- 694694 "ChromADICT", ANR-16-CE15-0018 "CHRODYT", ANR-16-CE12-0024 "CHIFT", ANR-16-CE11-0028 "REPLICAF", and Parisian Alliance of Cancer Research Institutes, PSL Aux Frontières Des Labex "TRACK".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Almouzni .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Torné, J., Orsi, G.A., Ray-Gallet, D., Almouzni, G. (2018). Imaging Newly Synthesized and Old Histone Variant Dynamics Dependent on Chaperones Using the SNAP-Tag System. In: Orsi, G., Almouzni, G. (eds) Histone Variants. Methods in Molecular Biology, vol 1832. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8663-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8663-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8662-0

  • Online ISBN: 978-1-4939-8663-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics