Skip to main content

Antibody Affinity Maturation by Computational Design

  • Protocol
  • First Online:
Antibody Engineering

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1827))

Abstract

The immune systems protect our bodies from foreign molecules or antigens, where antibodies play important roles. Antibodies evolve over time upon antigen encounter by somatically mutating their genome sequences. The end result is a series of antibodies that display higher affinities and specificities to specific antigens. This process is called affinity maturation. Recent improvements in computer hardware and modeling algorithms now enable the rational design of protein structures and functions, and several works on computer-aided antibody design have been published. In this chapter, we briefly describe computational methods for antibody affinity maturation, focusing on methods for sampling antibody conformations and for scoring designed antibody variants. We also discuss lessons learned from the successful computer-aided design of antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jorgensen WL (2004) The many roles of computation in drug discovery. Science 303:1813–1818. https://doi.org/10.1126/science.1096361

    Article  PubMed  CAS  Google Scholar 

  2. Kuroda D, Shirai H, Jacobson MP, Nakamura H (2012) Computer-aided antibody design. Protein Eng Des Sel 25:507–521. https://doi.org/10.1093/protein/gzs024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Krawczyk K, Dunbar J, Deane CM (2017) Computational tools for aiding rational antibody design. Methods Mol Biol. 1529:399–416

    Article  CAS  PubMed  Google Scholar 

  4. Clark LA, Boriack-Sjodin PA, Eldredge J et al (2006) Affinity enhancement of an in vivo matured therapeutic antibody using structure-based computational design. Protein Sci 15:949–960. https://doi.org/10.1110/ps.052030506

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Lippow SM, Wittrup KD, Tidor B (2007) Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol 25:1171–1176. https://doi.org/10.1038/nbt1336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li B, Zhao L, Wang C et al (2010) The protein-protein interface evolution acts in a similar way to antibody affinity maturation. J Biol Chem 285:3865–3871. https://doi.org/10.1074/jbc.M109.076547

    Article  PubMed  CAS  Google Scholar 

  7. Kiyoshi M, Caaveiro JMM, Miura E et al (2014) Affinity improvement of a therapeutic antibody by structure-based computational design: generation of electrostatic interactions in the transition state stabilizes the antibody-antigen complex. PLoS One 9:e87099. https://doi.org/10.1371/journal.pone.0087099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Farady CJ, Sellers BD, Jacobson MP, Craik CS (2009) Improving the species cross-reactivity of an antibody using computational design. Bioorg Med Chem Lett 19:3744–3747. https://doi.org/10.1016/j.bmcl.2009.05.005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. McConnell AD, Spasojevich V, Macomber JL et al (2013) An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Eng Des Sel 26:151–163. https://doi.org/10.1093/protein/gzs090

    Article  PubMed  CAS  Google Scholar 

  10. Choi Y, Ndong C, Griswold KE, Bailey-Kellogg C (2016) Computationally driven antibody engineering enables simultaneous humanization and thermostabilization. Protein Eng Des Sel 29:419–426. https://doi.org/10.1093/protein/gzw024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Chennamsetty N, Voynov V, Kayser V et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106:11937–11942. https://doi.org/10.1073/pnas.0904191106

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lauer TM, Agrawal NJ, Chennamsetty N et al (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101:102–115. https://doi.org/10.1002/jps.22758

    Article  PubMed  CAS  Google Scholar 

  13. Almagro JC, Fransson J (2008) Humanization of antibodies. Front Biosci 13:1619–1633. https://doi.org/10.1093/toxsci/kft065

    Article  PubMed  CAS  Google Scholar 

  14. Abhinandan KR, Martin ACR (2007) Analyzing the “degree of humanness” of antibody sequences. J Mol Biol 369:852–862. https://doi.org/10.1016/j.jmb.2007.02.100

    Article  PubMed  CAS  Google Scholar 

  15. Zhang D, Chen CF, Zhao BB et al (2013) A novel antibody humanization method based on epitopes scanning and molecular dynamics simulation. PLoS One 8:e80636. https://doi.org/10.1371/journal.pone.0080636

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seeliger D (2013) Development of scoring functions for antibody sequence assessment and optimization. PLoS One 8:e76909. https://doi.org/10.1371/journal.pone.0076909

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hanf KJM, Arndt JW, Chen LL et al (2014) Antibody humanization by redesign of complementarity-determining region residues proximate to the acceptor framework. Methods 65:68–76. https://doi.org/10.1016/j.ymeth.2013.06.024

    Article  PubMed  CAS  Google Scholar 

  18. Olimpieri PP, Marcatili P, Tramontano A (2015) Tabhu: tools for antibody humanization. Bioinformatics 31:434–435. https://doi.org/10.1093/bioinformatics/btu667

    Article  PubMed  CAS  Google Scholar 

  19. Margreitter C, Mayrhofer P, Kunert R, Oostenbrink C (2016) Antibody humanization by molecular dynamics simulations—in-silico guided selection of critical backmutations. J Mol Recognit 29:266–275. https://doi.org/10.1002/jmr.2527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Chothia C, Lesk AM (1987) Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol 196:901–917. https://doi.org/10.1016/0022-2836(87)90412-8

    Article  PubMed  CAS  Google Scholar 

  21. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612. https://doi.org/10.1002/jcc.20084

    Article  PubMed  CAS  Google Scholar 

  22. Kuroda D, Shirai H, Kobori M, Nakamura H (2008) Structural classification of CDR-H3 revisited: a lesson in antibody modeling. Proteins Struct Funct Bioinforma 73:608–620. https://doi.org/10.1002/prot.22087

    Article  CAS  Google Scholar 

  23. Weitzner BD, Dunbrack RL, Gray JJ (2015) The origin of CDR H3 structural diversity. Structure 23:302–311. https://doi.org/10.1016/j.str.2014.11.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Tsuchiya Y, Mizuguchi K (2016) The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops. Protein Sci 25:815–825. https://doi.org/10.1002/pro.2874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Regep C, Georges G, Shi J et al (2017) The H3 loop of antibodies shows unique structural characteristics. Proteins Struct Funct Bioinforma 85:1311–1318. https://doi.org/10.1002/prot.25291

    Article  CAS  Google Scholar 

  26. Dunbar J, Krawczyk K, Leem J et al (2014) SAbDab: the structural antibody database. Nucleic Acids Res 42:D1140–D1146. https://doi.org/10.1093/nar/gkt1043

    Article  PubMed  CAS  Google Scholar 

  27. Adolf-Bryfogle J, Xu Q, North B et al (2015) PyIgClassify: a database of antibody CDR structural classifications. Nucleic Acids Res 43:D432–D438. https://doi.org/10.1093/nar/gku1106

    Article  PubMed  CAS  Google Scholar 

  28. Al-Lazikani B, Lesk AM, Chothia C (1997) Standard conformations for the canonical structures of immunoglobulins. J Mol Biol 273:927–948. https://doi.org/10.1006/jmbi.1997.1354

    Article  PubMed  CAS  Google Scholar 

  29. Kuroda D, Shirai H, Kobori M, Nakamura H (2009) Systematic classification of CDR-L3 in antibodies: implications of the light chain subtypes and the VL-VH interface. Proteins Struct Funct Bioinforma 75:139–146. https://doi.org/10.1002/prot.22230

    Article  CAS  Google Scholar 

  30. North B, Lehmann A, Dunbrack RL (2011) A new clustering of antibody CDR loop conformations. J Mol Biol 406:228–256. https://doi.org/10.1016/j.jmb.2010.10.030

    Article  PubMed  CAS  Google Scholar 

  31. Teplyakov A, Gilliland GL (2014) Canonical structures of short CDR-L3 in antibodies. Proteins Struct Funct Bioinforma 82:1668–1673. https://doi.org/10.1002/prot.24559

    Article  CAS  Google Scholar 

  32. Foote J, Winter G (1992) Antibody framework residues affecting the conformation of the hypervariable loops. J Mol Biol 224:487–499. https://doi.org/10.1016/0022-2836(92)91010-M

    Article  PubMed  CAS  Google Scholar 

  33. Spiess C, Zhai Q, Carter PJ (2015) Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 67:95–106

    Article  CAS  PubMed  Google Scholar 

  34. Tomlinson IM, Walter G, Jones PT et al (1996) The imprint of somatic hypermutation on the repertoire of human germline V genes. J Mol Biol 256:813–817. https://doi.org/10.1006/jmbi.1996.0127

    Article  PubMed  CAS  Google Scholar 

  35. Clark LA, Ganesan S, Papp S, van Vlijmen HWT (2006) Trends in antibody sequence changes during the somatic hypermutation process. J Immunol 177:333–340. https://doi.org/10.4049/jimmunol.177.1.333

    Article  PubMed  CAS  Google Scholar 

  36. Burkovitz A, Sela-Culang I, Ofran Y (2014) Large-scale analysis of somatic hypermutations in antibodies reveals which structural regions, positions and amino acids are modified to improve affinity. FEBS J 281:306–319. https://doi.org/10.1111/febs.12597

    Article  PubMed  CAS  Google Scholar 

  37. DeKosky BJ, Lungu OI, Park D et al (2016) Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A 113:E2636–E2645. https://doi.org/10.1073/pnas.1525510113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Li Y, Li H, Yang F et al (2003) X-ray snapshots of the maturation of an antibody response to a protein antigen. Nat Struct Mol Biol 10:482–488. https://doi.org/10.1038/nsb930

    Article  CAS  Google Scholar 

  39. Kuroda D, Gray JJ (2016) Shape complementarity and hydrogen bond preferences in protein-protein interfaces: implications for antibody modeling and protein-protein docking. Bioinformatics 32:2451–2456. https://doi.org/10.1093/bioinformatics/btw197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yanaka S, Moriwaki Y, Tsumoto K, Sugase K (2017) Elucidation of potential sites for antibody engineering by fluctuation editing. Sci Rep 7:9597. https://doi.org/10.1038/s41598-017-10246-9

    Article  PubMed  PubMed Central  Google Scholar 

  41. Briney BS, Willis JR, Crowe JE (2012) Location and length distribution of somatic hypermutation-associated DNA insertions and deletions reveals regions of antibody structural plasticity. Genes Immun 13:523–529. https://doi.org/10.1038/gene.2012.28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Wedemayer GJ, Patten PA, Wang LH et al (1997) Structural insights into the evolution of an antibody combining site. Science 276:1665–1669. https://doi.org/10.1126/science.276.5319.1665

    Article  PubMed  CAS  Google Scholar 

  43. Zimmermann J, Oakman EL, Thorpe IF et al (2006) Antibody evolution constrains conformational heterogeneity by tailoring protein dynamics. Proc Natl Acad Sci 103:13722–13727. https://doi.org/10.1073/pnas.0603282103

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Thorpe IF, Brooks CL (2007) Molecular evolution of affinity and flexibility in the immune system. Proc Natl Acad Sci 104:8821–8826. https://doi.org/10.1073/pnas.0610064104

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Wong SE, Sellers BD, Jacobson MP (2011) Effects of somatic mutations on CDR loop flexibility during affinity maturation. Proteins Struct Funct Bioinforma 79:821–829. https://doi.org/10.1002/prot.22920

    Article  CAS  Google Scholar 

  46. Schmidt AG, Xu H, Khan AR et al (2013) Preconfiguration of the antigen-binding site during affinity maturation of a broadly neutralizing influenza virus antibody. Proc Natl Acad Sci U S A 110:264–269. https://doi.org/10.1073/pnas.1218256109

    Article  PubMed  Google Scholar 

  47. Li T, Tracka MB, Uddin S et al (2015) Rigidity emerges during antibody evolution in three distinct antibody systems: evidence from QSFR analysis of fab fragments. PLoS Comput Biol 11:e1004327. https://doi.org/10.1371/journal.pcbi.1004327

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Furukawa K, Shirai H, Azuma T, Nakamura H (2001) A role of the third complementarity-determining region in the affinity maturation of an antibody. J Biol Chem 276:27622–27628. https://doi.org/10.1074/jbc.M102714200

    Article  PubMed  CAS  Google Scholar 

  49. James LC, Roversi P, Tawfik DS (2003) Antibody multispecificity mediated by conformational diversity. Science 299:1362–1367. https://doi.org/10.1126/science.1079731

    Article  PubMed  CAS  Google Scholar 

  50. Bradbury ARM, Sidhu S, Dübel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29:245–254. https://doi.org/10.1038/nbt.1791

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Finlay WJJ, Almagro JC (2012) Natural and man-made V-gene repertoires for antibody discovery. Front Immunol 3:342

    PubMed  PubMed Central  Google Scholar 

  52. Gray AC, Sidhu SS, Chandrasekera PC et al (2016) Animal-friendly affinity reagents: replacing the needless in the haystack. Trends Biotechnol 34:960–969

    Article  CAS  PubMed  Google Scholar 

  53. Guntas G, Purbeck C, Kuhlman B (2010) Engineering a protein-protein interface using a computationally designed library. Proc Natl Acad Sci 107:19296–19301. https://doi.org/10.1073/pnas.1006528107

    Article  PubMed  PubMed Central  Google Scholar 

  54. Barderas R, Desmet J, Timmerman P et al (2008) Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci U S A 105:9029–9034. https://doi.org/10.1073/pnas.0801221105

    Article  PubMed  PubMed Central  Google Scholar 

  55. Koga N, Tatsumi-Koga R, Liu G et al (2012) Principles for designing ideal protein structures. Nature 491:222–227. https://doi.org/10.1038/nature11600

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Marcos E, Basanta B, Chidyausiku TM et al (2017) Principles for designing proteins with cavities formed by curved β sheets. Science 355:201–206. https://doi.org/10.1126/science.aah7389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Moal IH, Moretti R, Baker D, Fernández-Recio J (2013) Scoring functions for protein-protein interactions. Curr Opin Struct Biol 23:862–867

    Article  CAS  PubMed  Google Scholar 

  58. Dunbrack RL (2002) Rotamer libraries in the 21st century. Curr Opin Struct Biol 12:431–440

    Article  CAS  PubMed  Google Scholar 

  59. Samish I, MacDermaid CM, Perez-Aguilar JM, Saven JG (2011) Theoretical and computational protein design. Annu Rev Phys Chem 62:129–149. https://doi.org/10.1146/annurev-physchem-032210-103509

    Article  PubMed  CAS  Google Scholar 

  60. Dahiyat BI, Gordon DB, Mayo SL (1997) Automated design of the surface positions of protein helices. Protein Sci 6:1333–1337. https://doi.org/10.1002/pro.5560060622

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Dahiyat BI, Mayo SL (1997) Probing the role of packing specificity in protein design. Proc Natl Acad Sci U S A 94:10172–10177. https://doi.org/10.1073/pnas.94.19.10172

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Su A, Mayo SL (1997) Coupling backbone flexibility and amino acid sequence selection in protein design. Protein Sci 6:1701–1707. https://doi.org/10.1002/pro.5560060810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Kuhlman B, Dantas G, Ireton GC et al (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302:1364–1368. https://doi.org/10.1126/science.1089427

    Article  PubMed  CAS  Google Scholar 

  64. Selzer T, Albeck S, Schreiber G (2000) Rational design of faster associating and tighter binding protein complexes. Nat Struct Biol 7:537–541. https://doi.org/10.1038/76744

    Article  PubMed  CAS  Google Scholar 

  65. Marvin JS, Lowman HB (2003) Redesigning an antibody fragment for faster association with its antigen. Biochemistry 42:7077–7083. https://doi.org/10.1021/bi026947q

    Article  PubMed  CAS  Google Scholar 

  66. Sammond DW, Eletr ZM, Purbeck C et al (2007) Structure-based protocol for identifying mutations that enhance protein-protein binding affinities. J Mol Biol 371:1392–1404. https://doi.org/10.1016/j.jmb.2007.05.096

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Filchtinski D, Sharabi O, Rüppel A et al (2010) What makes Ras an efficient molecular switch: a computational, biophysical, and structural study of Ras-GDP interactions with mutants of Raf. J Mol Biol 399:422–435. https://doi.org/10.1016/j.jmb.2010.03.046

    Article  PubMed  CAS  Google Scholar 

  68. Moult J, Pedersen JT, Judson R, Fidelis K (1995) A large-scale experiment to assess protein structure prediction methods. Proteins Struct Funct Bioinforma 23:ii–iv

    Article  CAS  Google Scholar 

  69. Janin J, Henrick K, Moult J et al (2003) CAPRI: a critical assessment of PRedicted interactions. Proteins Struct Funct Genet 52:2–9. https://doi.org/10.1002/prot.10381

    Article  PubMed  CAS  Google Scholar 

  70. Michino M, Abola E, GPCR Dock 2008 Participants et al (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat Rev Drug Discov 8:455–463. https://doi.org/10.1038/nrd2877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Radivojac P, Clark WT, Oron TR et al (2013) A large-scale evaluation of computational protein function prediction. Nat Methods 10:221–227. https://doi.org/10.1038/nmeth.2340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Almagro JC, Teplyakov A, Luo J et al (2014) Second antibody modeling assessment (AMA-II). Proteins Struct Funct Bioinforma 82:1553–1562

    Article  CAS  Google Scholar 

  73. Lensink MF, Moal IH, Bates PA et al (2014) Blind prediction of interfacial water positions in CAPRI. Proteins Struct Funct Bioinforma 82:620–632. https://doi.org/10.1002/prot.24439

    Article  CAS  Google Scholar 

  74. Lensink MF, Velankar S, Kryshtafovych A et al (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins Struct Funct Bioinforma 84(Suppl 1):323–348. https://doi.org/10.1002/prot.25007

    Article  CAS  Google Scholar 

  75. Fleishman SJ, Whitehead TA, Strauch EM et al (2011) Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J Mol Biol 414:289–302. https://doi.org/10.1016/j.jmb.2011.09.031

    Article  PubMed  CAS  Google Scholar 

  76. Moretti R, Fleishman SJ, Agius R et al (2013) Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins Struct Funct Bioinforma 81:1980–1987. https://doi.org/10.1002/prot.24356

    Article  CAS  Google Scholar 

  77. Fleishman SJ, Whitehead TA, Ekiert DC et al (2011) Computational design of proteins targeting the conserved stem region of influenza hemagglutinin. Science 332:816–821. https://doi.org/10.1126/science.1202617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Karanicolas J, Corn JE, Chen I et al (2011) A de novo protein binding pair by computational design and directed evolution. Mol Cell 42:250–260. https://doi.org/10.1016/j.molcel.2011.03.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Stranges PB, Machius M, Miley MJ et al (2011) Computational design of a symmetric homodimer using beta-strand assembly. Proc Natl Acad Sci U S A 108:20562–20567. https://doi.org/10.1073/pnas.1115124108

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sammond DW, Bosch DE, Butterfoss GL et al (2011) Computational design of the sequence and structure of a protein-binding peptide. J Am Chem Soc 133:4190–4192. https://doi.org/10.1021/ja110296z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Whitehead TA, Chevalier A, Song Y et al (2012) Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat Biotechnol 30:543–548. https://doi.org/10.1038/nbt.2214

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Der BS, MacHius M, Miley MJ et al (2012) Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J Am Chem Soc 134:375–385. https://doi.org/10.1021/ja208015j

    Article  PubMed  CAS  Google Scholar 

  83. Procko E, Hedman R, Hamilton K et al (2013) Computational design of a protein-based enzyme inhibitor. J Mol Biol 425:3563–3575. https://doi.org/10.1016/j.jmb.2013.06.035

    Article  PubMed  CAS  Google Scholar 

  84. Stranges PB, Kuhlman B (2013) A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds. Protein Sci 22:74–82. https://doi.org/10.1002/pro.2187

    Article  PubMed  CAS  Google Scholar 

  85. Das R, Baker D (2008) Macromolecular Modeling with Rosetta. Annu Rev Biochem 77:363–382. https://doi.org/10.1146/annurev.biochem.77.062906.171838

    Article  PubMed  CAS  Google Scholar 

  86. Guerois R, Nielsen J, Serrano L (2002) Predicting changes in the stability of proteins and protein complexes: a study of more than 1000 mutations. J Mol Biol 320:369–387. https://doi.org/10.1016/S0022-2836(02)00442-4

    Article  PubMed  CAS  Google Scholar 

  87. Gainza P, Roberts KE, Georgiev I et al (2013) OSPREY: protein design with ensembles, flexibility, and provable algorithms. Methods Enzymol 523:87–107. https://doi.org/10.1016/B978-0-12-394292-0.00005-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Pantazes RJ, Grisewood MJ, Li T et al (2015) The iterative protein redesign and optimization (IPRO) suite of programs. J Comput Chem 36:251–263. https://doi.org/10.1002/jcc.23796

    Article  PubMed  CAS  Google Scholar 

  89. Jacobson MP, Pincus DL, Rapp CS et al (2004) A hierarchical approach to all-atom protein loop prediction. Proteins Struct Funct Genet 55:351–367. https://doi.org/10.1002/prot.10613

    Article  PubMed  CAS  Google Scholar 

  90. Gray JJ, Moughon S, Wang C et al (2003) Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. J Mol Biol 331:281–299. https://doi.org/10.1016/S0022-2836(03)00670-3

    Article  PubMed  CAS  Google Scholar 

  91. Kortemme T, Joachimiak LA, Bullock AN et al (2004) Computational redesign of protein-protein interaction specificity. Nat Struct Mol Biol 11:371–379. https://doi.org/10.1038/nsmb749

    Article  PubMed  CAS  Google Scholar 

  92. Rohl CA, Strauss CE, Misura KM, Baker D (2004) Protein structure prediction using Rosetta. Methods Enzymol 383:66–93. https://doi.org/10.1016/S0076-6879(04)83004-0

    Article  PubMed  CAS  Google Scholar 

  93. Tinberg CE, Khare SD, Dou J et al (2013) Computational design of ligand-binding proteins with high affinity and selectivity. Nature 501:212–216. https://doi.org/10.1038/nature12443

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Chaudhury S, Lyskov S, Gray JJ (2010) PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics 26:689–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fleishman SJ, Leaver-Fay A, Corn JE et al (2011) RosettaScripts: a scripting language interface to the Rosetta macromolecular modeling suite. PLoS One 6:e20161. https://doi.org/10.1371/journal.pone.0020161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Adolf-Bryfogle J, Dunbrack RL (2013) The PyRosetta toolkit: a graphical user interface for the Rosetta software suite. PLoS One 8:e66856. https://doi.org/10.1371/journal.pone.0066856

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Lyskov S, Chou FC, Conchúir SÓ et al (2013) Serverification of molecular modeling applications: the Rosetta online server that includes everyone (ROSIE). PLoS One 8:e63906. https://doi.org/10.1371/journal.pone.0063906

    Article  PubMed  PubMed Central  Google Scholar 

  98. Der BS, Kluwe C, Miklos AE et al (2013) Alternative computational protocols for supercharging protein surfaces for reversible unfolding and retention of stability. PLoS One 8:e64363. https://doi.org/10.1371/journal.pone.0064363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Willis JR, Sapparapu G, Murrell S et al (2015) Redesigned HIV antibodies exhibit enhanced neutralizing potency and breadth. J Clin Invest 125:2523–2531. https://doi.org/10.1172/JCI80693

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ollikainen N, Smith CA, Fraser JS, Kortemme T (2013) Flexible backbone sampling methods to model and design protein alternative conformations. Methods Enzymol 523:61–85. https://doi.org/10.1016/B978-0-12-394292-0.00004-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Babor M, Mandell DJ, Kortemme T (2011) Assessment of flexible backbone protein design methods for sequence library prediction in the therapeutic antibody Herceptin-HER2 interface. Protein Sci 20:1082–1089. https://doi.org/10.1002/pro.632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Jackson EL, Ollikainen N, Covert AW et al (2013) Amino-acid site variability among natural and designed proteins. PeerJ 1:e211. https://doi.org/10.7717/peerj.211

    Article  PubMed  PubMed Central  Google Scholar 

  103. Vajda S, Hall DR, Kozakov D (2013) Sampling and scoring: a marriage made in heaven. Proteins Struct Funct Bioinforma 81:1874–1884

    Article  CAS  Google Scholar 

  104. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct Funct Bioinforma 77:778–795. https://doi.org/10.1002/prot.22488

    Article  CAS  Google Scholar 

  105. Liang S, Zheng D, Zhang C, Standley DM (2011) Fast and accurate prediction of protein side-chain conformations. Bioinformatics 27:2913–2914. https://doi.org/10.1093/bioinformatics/btr482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Miao Z, Cao Y, Jiang T (2011) RASP: rapid modeling of protein side chain conformations. Bioinformatics 27:3117–3122. https://doi.org/10.1093/bioinformatics/btr538

    Article  PubMed  CAS  Google Scholar 

  107. Nagata K, Randall A, Baldi P (2012) SIDEpro: a novel machine learning approach for the fast and accurate prediction of side-chain conformations. Proteins 80:142–153. https://doi.org/10.1002/prot.23170

    Article  PubMed  CAS  Google Scholar 

  108. Sulea T, Vivcharuk V, Corbeil CR et al (2016) Assessment of solvated interaction energy function for ranking antibody-antigen binding affinities. J Chem Inf Model 56:1292–1303. https://doi.org/10.1021/acs.jcim.6b00043

    Article  PubMed  CAS  Google Scholar 

  109. Poosarla VG, Li T, Goh BC et al (2017) Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnol Bioeng 114:1331–1342. https://doi.org/10.1002/bit.26244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Entzminger KC, Hyun J, Pantazes RJ et al (2017) De novo design of antibody complementarity determining regions binding a FLAG tetra-peptide. Sci Rep 7:10295. https://doi.org/10.1038/s41598-017-10737-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Baran D, Pszolla MG, Lapidoth GD et al (2017) Principles for computational design of binding antibodies. Proc Natl Acad Sci U S A 114:10900–10905. https://doi.org/10.1073/pnas.1707171114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fukunaga A, Tsumoto K (2013) Improving the affinity of an antibody for its antigen via long-range electrostatic interactions. Protein Eng Des Sel 26:773–780. https://doi.org/10.1093/protein/gzt053

    Article  PubMed  CAS  Google Scholar 

  113. MacKerell AD, Bashford D, Bellott M et al (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616. https://doi.org/10.1021/jp973084f

    Article  PubMed  CAS  Google Scholar 

  114. Kangas E, Tidor B (1998) Optimizing electrostatic affinity in ligand-receptor binding: theory, computation, and ligand properties. J Chem Phys 109:7522–7545. https://doi.org/10.1063/1.477375

    Article  CAS  Google Scholar 

  115. Brooks BR, Bruccoleri RE, Olafson BD et al (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217. https://doi.org/10.1002/jcc.540040211

    Article  CAS  Google Scholar 

  116. Looger LL, Hellinga HW (2001) Generalized dead-end elimination algorithms make large-scale protein side-chain structure prediction tractable: implications for protein design and structural genomics. J Mol Biol 307:429–445. https://doi.org/10.1006/jmbi.2000.4424

    Article  PubMed  CAS  Google Scholar 

  117. Kiel C, Selzer T, Shaul Y et al (2004) Electrostatically optimized Ras-binding Ral guanine dissociation stimulator mutants increase the rate of association by stabilizing the encounter complex. Proc Natl Acad Sci U S A 101:9223–9228. https://doi.org/10.1073/pnas.0401160101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. Bogan AA, Thorn KS (1998) Anatomy of hot spots in protein interfaces. J Mol Biol 280:1–9. https://doi.org/10.1006/jmbi.1998.1843

    Article  PubMed  CAS  Google Scholar 

  119. Moreira IS, Fernandes PA, Ramos MJ (2007) Hot spots—a review of the protein-protein interface determinant amino-acid residues. Proteins Struct Funct Genet 68:803–812

    Article  CAS  PubMed  Google Scholar 

  120. Moal IH, Fernández-Recio J (2012) SKEMPI: a structural kinetic and energetic database of mutant protein interactions and its use in empirical models. Bioinformatics 28:2600–2607. https://doi.org/10.1093/bioinformatics/bts489

    Article  PubMed  CAS  Google Scholar 

  121. Sirin S, Apgar JR, Bennett EM, Keating AE (2016) AB-bind: antibody binding mutational database for computational affinity predictions. Protein Sci 25:393–409. https://doi.org/10.1002/pro.2829

    Article  PubMed  CAS  Google Scholar 

  122. Akiba H, Tsumoto K (2015) Thermodynamics of antibody-antigen interaction revealed by mutation analysis of antibody variable regions. J Biochem 158:1–13. https://doi.org/10.1093/jb/mvv049

    Article  PubMed  CAS  Google Scholar 

  123. Oberlin M, Kroemer R, Mikol V et al (2012) Engineering protein therapeutics: predictive performances of a structure-based virtual affinity maturation protocol. J Chem Inf Model 52:2204–2214. https://doi.org/10.1021/ci3001474

    Article  PubMed  CAS  Google Scholar 

  124. Zhou H, Zhou Y (2002) Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 11:2714–2726. https://doi.org/10.1110/ps.0217002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Yang Y, Zhou Y (2008) Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins Struct Funct Genet 72:793–803. https://doi.org/10.1002/prot.21968

    Article  PubMed  CAS  Google Scholar 

  126. DeBartolo J, Taipale M, Keating AE (2014) Genome-wide prediction and validation of peptides that bind human prosurvival Bcl-2 proteins. PLoS Comput Biol 10:e1003693. https://doi.org/10.1371/journal.pcbi.1003693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Pires DEV, Ascher DB (2016) mCSM-AB: a web server for predicting antibody-antigen affinity changes upon mutation with graph-based signatures. Nucleic Acids Res 44:W469–W473. https://doi.org/10.1093/nar/gkw458

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Lapidoth GD, Baran D, Pszolla GM et al (2015) AbDesign: an algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins Struct Funct Bioinforma 83:1385–1406. https://doi.org/10.1002/prot.24779

    Article  CAS  Google Scholar 

  129. Khatib F, Cooper S, Tyka MD et al (2011) Algorithm discovery by protein folding game players. Proc Natl Acad Sci 108:18949–18953. https://doi.org/10.1073/pnas.1115898108

    Article  PubMed  PubMed Central  Google Scholar 

  130. Weitzner BD, Jeliazkov JR, Lyskov S et al (2017) Modeling and docking of antibody structures with Rosetta. Nat Protoc 12:401–416. https://doi.org/10.1038/nprot.2016.180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Weitzner BD, Kuroda D, Marze N et al (2014) Blind prediction performance of RosettaAntibody 3.0: grafting, relaxation, kinematic loop modeling, and full CDR optimization. Proteins Struct Funct Bioinforma 82:1611–1623. https://doi.org/10.1002/prot.24534

    Article  CAS  Google Scholar 

  132. Clark AJ, Gindin T, Zhang B et al (2017) Free energy perturbation calculation of relative binding free energy between broadly neutralizing antibodies and the gp120 glycoprotein of HIV-1. J Mol Biol 429:930–947. https://doi.org/10.1016/j.jmb.2016.11.021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Wang L, Berne BJ, Friesner RA (2012) On achieving high accuracy and reliability in the calculation of relative protein-ligand binding affinities. Proc Natl Acad Sci U S A 109:1937–1942. https://doi.org/10.1073/pnas.1114017109

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gapsys V, Michielssens S, Seeliger D, de Groot BL (2016) Accurate and rigorous prediction of the changes in protein free energies in a large-scale mutation scan. Angew Chem Int Ed Engl 55:7364–7368. https://doi.org/10.1002/anie.201510054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Higo J, Kasahara K, Dasgupta B, Nakamura H (2017) Enhancement of canonical sampling by virtual-state transitions. J Chem Phys 146:44104. https://doi.org/10.1063/1.4974087

    Article  CAS  Google Scholar 

  136. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  PubMed  CAS  Google Scholar 

  137. Asti L, Uguzzoni G, Marcatili P, Pagnani A (2016) Maximum-entropy models of sequenced immune repertoires predict antigen-antibody affinity. PLoS Comput Biol 12:e1004870. https://doi.org/10.1371/journal.pcbi.1004870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Wu X, Zhou T, Zhu J et al (2011) Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333:1593–1602. https://doi.org/10.1126/science.1207532

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Georgiou G, Ippolito GC, Beausang J et al (2014) The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat Biotechnol 32:158–168. https://doi.org/10.1038/nbt.2782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Callan CG, Mora T, Walczak AM (2017) Repertoire sequencing and the statistical ensemble approach to adaptive immunity. Curr Opin Syst Biol 1:44–47. https://doi.org/10.1016/j.coisb.2016.12.014

    Article  Google Scholar 

Download references

Acknowledgment

D.K. was funded by the Japan Society for the Promotion of Science (grant number 17K18113) and by the Japanese Initiative for Progress of Research on Infectious Diseases for Global Epidemics (grant number JP18fm0208022h).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kouhei Tsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuroda, D., Tsumoto, K. (2018). Antibody Affinity Maturation by Computational Design. In: Nevoltris, D., Chames, P. (eds) Antibody Engineering. Methods in Molecular Biology, vol 1827. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8648-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8648-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8647-7

  • Online ISBN: 978-1-4939-8648-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics