Skip to main content

Reactions in NMR Tubes as Key Weapon in Rational Drug Design

  • Protocol
  • First Online:
Rational Drug Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1824))

Abstract

NMR spectroscopy is a powerful technique suitable for obtaining detailed structural and dynamic data at atomic resolution. Progress in NMR instrumentation has led the scientific community to produce novel techniques which provide valuable information to resolve demanding and crucial questions of molecular biology and rational drug design. This chapter outlines the progress of NMR spectroscopy in the rational drug design. In addition, it offers an example of a reaction in NMR tube for achieving rational drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carlon A, Ravera E, Andrałojc W et al (2016) How to tackle protein structural data from solution and solid state: an integrated approach. Prog Nucl Magn Reson Spectrosc 92–93:54–70. https://doi.org/10.1016/j.pnmrs.2016.01.001

    Article  CAS  PubMed  Google Scholar 

  2. Fello IC, Pierattelli R (eds) (2014) Intrinsically disordered proteins studies by NMR spectroscopy (Advances in Experimental Medicine and Biology). Springer, Switzerland. https://doi.org/10.1007/978-3-319-20164-1

    Book  Google Scholar 

  3. Takeuchi K, Wagner G (2006) NMR studies of protein interactions. Curr Opin Struct Biol 16:109–117. https://doi.org/10.1016/j.sbi.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  4. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38(12):1784–1788. https://doi.org/10.1002/(SICI)1521-3773(19990614)38:12<1784::AID-ANIE1784>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  5. Carlomagno T, Blommers MJ, Meiler J et al (2003) The high-resolution solution structure of epothilone A bound to tubulin: an understanding of the structure-activity relationships for a powerful class of antitumor agents. Angew Chem Int Ed Engl 42:2511–2515. https://doi.org/10.1002/anie.200351276

    Article  CAS  PubMed  Google Scholar 

  6. Otting G, Wuthrich K (1990) Heteronuclear filters in two-dimensional [1H, 1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Q Rev Biophys 1990(23):39–96. https://doi.org/10.1017/S0033583500005412

    Article  Google Scholar 

  7. Walters KJ, Ferentz AE, Hare BJ et al (2001) Characterizing protein-protein complexes and oligomers by nuclear magnetic resonance spectroscopy. In: James TL, Dötsch V, Schmitz U (eds) Nuclear magnetic resonance of biological macromolecules - Part B (methods in enzymology), vol 339. Elsevier, New York, pp 238–258. https://doi.org/10.1016/S0076-6879(01)39316-3

    Chapter  Google Scholar 

  8. Walters KJ, Matsuo H, Wagner G (1997) A simple method to distinguish intermonomer nuclear Overhauser effects in homodimeric proteins with C2 symmetry. J Am Chem Soc 119(25):5958–5959. https://doi.org/10.1021/ja963309k

    Article  CAS  Google Scholar 

  9. Maslennikov I, Choe S (2013) Advances in NMR structures of integral membrane proteins. Curr Opin Struct Biol 23(4):555–562. https://doi.org/10.1016/j.sbi.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu JJ, Horst R, Katritch V et al (2012) Biased signaling pathways in b2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110. https://doi.org/10.1126/science.1215802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wishart DS (2011) Interpreting protein chemical shift data. Prog Nucl Magn Reson Spectrosc 58:62–87. https://doi.org/10.1016/j.pnmrs.2010.07.004

    Article  CAS  PubMed  Google Scholar 

  12. Shuker SB, Hajduk PJ, Meadows RP, Fesik SW (1996) Discovering high-affinity ligands for proteins: SAR by NMR. Science 274(5292):1531–1534

    Article  CAS  Google Scholar 

  13. Middleton DA (2006) NMR methods for characterising ligand-receptor and drug–membrane interactions in pharmaceutical research. In: Webb GA (ed) Annual reports in NMR spectroscopy, vol 60. Elsevier, New York, pp 39–75. https://doi.org/10.1016/S0066-4103(06)60002-1

    Chapter  Google Scholar 

  14. Ritchie TK, Grinkova YV, Bayburt TH et al (2009) Reconstitution of membrane proteins in phospholipid bilayer nanodiscs. In: Düzgünes N (ed) Liposomes, Part F (methods in enzymology). Elsevier, New York. https://doi.org/10.1016/S0076-6879(09)64011-8

    Chapter  Google Scholar 

  15. Keifer PA (2003) Flow NMR applications in combinatorial chemistry. Curr Opin Chem Biol 7:388–394. https://doi.org/10.1016/S1367-5931(03)00051-6

    Article  CAS  PubMed  Google Scholar 

  16. Lenz E, Taylor S, Collins C et al (2002) Flow injection analysis with multiple on-line spectroscopic analysis (UV, IR, 1H-NMR and MS). J Pharm Biomed Anal 27:191–200. https://doi.org/10.1016/S0731-7085(01)00534-9

    Article  CAS  PubMed  Google Scholar 

  17. Louden D, Handley A, Taylor S et al (2000) Flow injection spectroscopic analysis of model drugs using on-line UV-diode array, FT-infrared and 1H-nuclear magnetic resonance spectroscopy and time-of-flight mass spectrometry. Analyst 125:927–931. https://doi.org/10.1039/B000696N

    Article  CAS  PubMed  Google Scholar 

  18. Renaud J-P, Chung C, Danielson H et al (2016) Biophysics in drug discovery: impact, challenges and opportunities. Nat Rev Drug Discov 15(10):679–698. https://doi.org/10.1038/nrd.2016.123

    Article  CAS  PubMed  Google Scholar 

  19. Pourmodheji H, Ghafar-Zadeh E, Magierowski S (2016) A multidisciplinary approach to high throughput nuclear magnetic resonance spectroscopy. Sensors 16(6):E850. https://doi.org/10.3390/s16060850

    Article  PubMed  Google Scholar 

  20. Wei Y, Zhang J, Zhou Y (2017) Characterization of glabridin/hydroxypropyl--cyclodextrin inclusion complex with robust solubility and enhanced bioactivity. Carbohydr Polym 159:152–160. https://doi.org/10.1016/j.carbpol.2016.11.093

    Article  CAS  PubMed  Google Scholar 

  21. Araya-Maturana R, Pessoa-Mahana H, Weiss-Lopez B (2008) Very long correlations (nJC,H n>3) in HMBC spectra. Nat Prod Commun 3:445–450

    CAS  Google Scholar 

  22. Oguadinma P, Bilodeau F, LaPlante R (2017) NMR strategies to support medicinal chemistry workflows for primary structure determination. Bioorg Med Chem Lett 27(2):242–247. https://doi.org/10.1016/j.bmcl.2016.11.066

    Article  CAS  PubMed  Google Scholar 

  23. Nardini V, Palaretti V, Jose da Silva GV (2017) Enantiomeric quantification of amines by 1H and 13C NMR: first report of S-citronellal as chiral derivatization agent (CDA). Microchem J 133:208–215. https://doi.org/10.1016/j.microc.2017.03.014

    Article  CAS  Google Scholar 

  24. Wenzel TJ, Wilcox JD (2003) Chiral reagents for the determination of enantiomeric excess and absolute configuration using NMR spectroscopy. Chirality 15:256–270. https://doi.org/10.1002/chir.10190

    Article  CAS  PubMed  Google Scholar 

  25. Silva MS (2017) Recent advances in multinuclear NMR spectroscopy for chiral recognition of organic compounds. Molecules 22:E247. https://doi.org/10.3390/molecules22020247

    Article  CAS  PubMed  Google Scholar 

  26. Sulima A, Cheng K, Jacobson AE (2013) Z and E rotamers of N-formyl-1-bromo-4-hydroxy-3-methoxymorphinan-6-one and their interconversion as studied by 1H/13C NMR spectroscopy and quantum chemical calculations. Magn Reson Chem 51:82–88. https://doi.org/10.1002/mrc.3909

    Article  CAS  PubMed  Google Scholar 

  27. Hansen PE, Kamounah FS, Hansen BKV et al (2007) Conformational and tautomeric eccentricities of 2-acetyl-1,8-dihydroxynaphthalenes. Magn Reson Chem 45:106–117. https://doi.org/10.1002/mrc.1925

    Article  CAS  PubMed  Google Scholar 

  28. Kolehmainen E, Osmialovski B (2012) 15N NMR studies of tautomerism. Int Rev Phys Chem 31:567–629. https://doi.org/10.1080/0144235X.2012.734157

    Article  CAS  Google Scholar 

  29. Santos R, Fernandes LM, Boto RF et al (2006) NMR spectroscopy study of 2-methylbenzoxazolium salts hydroxylation in DMSO-d6 solution. Tetrahedron Lett 47:6723–6725. https://doi.org/10.1016/j.tetlet.2006.07.091

    Article  CAS  Google Scholar 

  30. Rivera A, Núñez ME, Avella E et al (2008) An NMR study of sequential intermediates and collateral products in the conversion of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) to 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU). Tetrahedron Lett 49:2154–2158. https://doi.org/10.1016/j.tetlet.2008.01.091

    Article  CAS  Google Scholar 

  31. Mills A, O’Rourke C (2014) Photocatalytic organic synthesis in an NMR tube: C-C coupling of phenoxyacetic acid and acrylamide. Catal Today 230:256–264. https://doi.org/10.1016/j.cattod.2013.10.083

    Article  CAS  Google Scholar 

  32. Limtiaco JF, Beni S, Jones CJ (2011) NMR methods to monitor the enzymatic depolymerization of heparin. Anal Bioanal Chem 399:593–603. https://doi.org/10.1007/s00216-010-4132-7

    Article  CAS  PubMed  Google Scholar 

  33. Foley DA, Bez E, Codina A et al (2014) NMR flow tube for online nmr reaction monitoring. Anal Chem 86(24):12008–12013. https://doi.org/10.1021/ac502300q

    Article  CAS  PubMed  Google Scholar 

  34. http://chem.ch.huji.ac.il/nmr/preparation/preparation.html

  35. Ntountaniotis D, Agelis G, Resvani A et al (2014) An efficient synthetic method and theoretical calculations of olmesartan methyl ether: study of biological function of AT1 antagonism. Comb Chem High Throughput Screen 17:652–662. https://doi.org/10.2174/138620731708140922171503

    Article  CAS  PubMed  Google Scholar 

  36. Murakami HT, Konno H, Fukutsu N et al (2008) Identification of a degradation product in stressed tablets of olmesartan medoxomil by the complementary use of HPLC hyphenated techniques. J Pharm Biomed Anal 47:553–559. https://doi.org/10.1016/j.jpba.2008.02.021

    Article  CAS  PubMed  Google Scholar 

  37. Zhang, F, Taizhi WU (2004) 4,6-dihydrofuro[3,4-d]imidazole-6-one derivatives and their salts and process for the preparation of the same. WO/2004/083213A1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ntountaniotis, D. (2018). Reactions in NMR Tubes as Key Weapon in Rational Drug Design. In: Mavromoustakos, T., Kellici, T. (eds) Rational Drug Design. Methods in Molecular Biology, vol 1824. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8630-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8630-9_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8629-3

  • Online ISBN: 978-1-4939-8630-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics