Skip to main content

Detection and Verification of Mammalian Mirtrons by Northern Blotting

  • Protocol
  • First Online:
miRNA Biogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1823))

Abstract

microRNAs (miRNAs) have vital roles in regulating gene expression—contributing to major diseases like cancer and heart disease. Over the last decade, thousands of miRNAs have been discovered through high throughput sequencing-based annotation. Different classes have been described, as well as a great dynamic range of expression levels. While sequencing approaches provide insight into biogenesis and allow confident identification, there is a need for additional methods for validation and characterization. Northern blotting was one of the first techniques used for studying miRNAs, and remains one of the most valuable as it avoids enzymatic manipulation of miRNA transcripts. Blotting can also provide insight into biogenesis by revealing RNA processing intermediates. Compared to sequencing, however, northern blotting is a relatively insensitive technology. This creates a challenge for detecting low expressed miRNAs, particularly those produced by inefficient, non-canonical pathways. In this chapter, we describe a strategy to study such miRNAs by northern blotting that involves ectopic expression of both miRNAs and miRNA-binding Argonaute (Ago) proteins. Through use of epitope tags, this strategy also provides a convenient method for verification of small RNA competency to be loaded into regulatory complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang Q, Mao Z, Li S, Hu J, Zhu Y (2014) A non-radioactive method for small RNA detection by northern blotting. Rice 7(1):26

    Article  PubMed  PubMed Central  Google Scholar 

  2. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904. https://doi.org/10.1016/j.biochi.2011.06.017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fendereski M, Zia MF, Shafiee M, Safari F, Saneie MH, Tavassoli M (2017) MicroRNA-196a as a potential diagnostic biomarker for esophageal squamous cell carcinoma. Cancer Investig 35(2):78–84. https://doi.org/10.1080/07357907.2016.1254228

    Article  CAS  Google Scholar 

  4. Meunier J, Lemoine F, Soumillon M, Liechti A, Weier M, Guschanski K, Hu H, Khaitovich P, Kaessmann H (2013) Birth and expression evolution of mammalian microRNA genes. Genome Res 23(1):34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Berezikov E (2011) Evolution of microRNA diversity and regulation in animals. Nat Rev Genet 12(12):846–860

    Article  CAS  PubMed  Google Scholar 

  6. Witten D, Tibshirani R, Gu SG, Fire A, Lui W-O (2010) Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls. BMC Biol 8(1):58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou J, Cheng Y, Yin M, Yang E, Gong W, Liu C, Zheng X, Deng K, Ren Z, Zhang Y (2015) Identification of novel miRNAs and miRNA expression profiling in wheat hybrid necrosis. PLoS One 10(2):e0117507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419

    Article  CAS  PubMed  Google Scholar 

  9. Ketting RF, Fischer S, Bernstein E, Sijen T, Hannon GJ, Plasterk R (2001) Dicer functions in RNA interfence and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Song J-J, Smith SK, Hannon GJ, Joshua-Tor L (2004) Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305(5689):1434–1437

    Article  CAS  PubMed  Google Scholar 

  11. Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other microprocessor-independent, dicer-dependent small RNAs. Genes Dev 22(20):2773–2785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ender C, Krek A, Friedländer MR, Beitzinger M, Weinmann L, Chen W, Pfeffer S, Rajewsky N, Meister G (2008) A human snoRNA with MicroRNA-like functions. Mol Cell 32(4):519–528

    Article  CAS  PubMed  Google Scholar 

  13. Maute RL, Schneider C, Sumazin P, Holmes A, Califano A, Basso K, Dalla-Favera R (2013) tRNA-derived microRNA modulates proliferation and the DNA damage response and is down-regulated in B cell lymphoma. Proc Natl Acad Sci U S A 110(4):1404–1409. https://doi.org/10.1073/pnas.1206761110

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoshikawa M, Fujii YR (2016) Human ribosomal RNA-derived resident MicroRNAs as the transmitter of information upon the cytoplasmic cancer stress. Biomed Res Int 2016:7562085. https://doi.org/10.1155/2016/7562085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Macfarlane LA, Murphy PR (2010) MicroRNA: biogenesis, function and role in cancer. Curr Genomics 11(7):537–561. https://doi.org/10.2174/138920210793175895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Curtis HJ, Sibley CR, Wood MJ (2012) Mirtrons, an emerging class of atypical miRNA. Wiley Interdiscip Rev 3(5):617–632

    Article  CAS  Google Scholar 

  18. Ladewig E, Okamura K, Flynt AS, Westholm JO, Lai EC (2012) Discovery of hundreds of mirtrons in mouse and human small RNA data. Genome Res 22(9):1634–1645. https://doi.org/10.1101/gr.133553.111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Westholm JO, Lai EC (2011) Mirtrons: microRNA biogenesis via splicing. Biochimie 93(11):1897–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wen J, Ladewig E, Shenker S, Mohammed J, Lai EC (2015) Analysis of nearly one thousand mammalian Mirtrons reveals novel features of dicer substrates. PLoS Comput Biol 11(9):e1004441. https://doi.org/10.1371/journal.pcbi.1004441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Norbury CJ (2013) Cytoplasmic RNA: a case of the tail wagging the dog. Nat Rev Mol Cell Biol 14(10):643–653

    Article  CAS  PubMed  Google Scholar 

  22. Bortolamiol-Becet D, Hu F, Jee D, Wen J, Okamura K, Lin C-J, Ameres SL, Lai EC (2015) Selective suppression of the splicing-mediated microRNA pathway by the terminal uridyltransferase tailor. Mol Cell 59(2):217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34(suppl_1):D140

    Article  CAS  PubMed  Google Scholar 

  24. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  25. Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3(1):12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sharbati-Tehrani S, Kutz-Lohroff B, Bergbauer R, Scholven J, Einspanier R (2008) miR-Q: a novel quantitative RT-PCR approach for the expression profiling of small RNA molecules such as miRNAs in a complex sample. BMC Mol Biol 9(1):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hwang H-W, Wentzel EA, Mendell JT (2009) Cell–cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci 106(17):7016–7021

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rio DC (2014) Northern blots for small RNAs and microRNAs. Cold Spring Harb Protoc 2014(7):793–797. https://doi.org/10.1101/pdb.prot080838

    Article  PubMed  Google Scholar 

  29. Xu H, Wang P, Fu Y, Zheng Y, Tang Q, Si L, You J, Zhang Z, Zhu Y, Zhou L (2010) Length of the ORF, position of the first AUG and the Kozak motif are important factors in potential dual-coding transcripts. Cell Res 20(4):445–457

    Article  CAS  PubMed  Google Scholar 

  30. Taji F, Kouchesfahani HM, Sheikholeslami F, Romani B, Baesi K, Vahabpour R, Edalati M, Teimoori-Toolabi L, Jazaeri EO, Abdoli A (2017) Autophagy induction reduces telomerase activity in HeLa cells. Mech Ageing Dev 163:40–45. https://doi.org/10.1016/j.mad.2016.12.011

    Article  PubMed  CAS  Google Scholar 

  31. Pall GS, Hamilton AJ (2008) Improved northern blot method for enhanced detection of small RNA. Nat Protoc 3(6):1077–1084. https://doi.org/10.1038/nprot.2008.67

    Article  PubMed  CAS  Google Scholar 

  32. Josefsen K, Nielsen H (2011) Northern blotting analysis. Methods Mol Biol 703:87–105. https://doi.org/10.1007/978-1-59745-248-9_7

    Article  PubMed  CAS  Google Scholar 

  33. Parmar S, Buchner P, Hawkesford M (2007) Leaf developmental stage affects sulfate depletion and specific sulfate transporter expression during sulfur deprivation in Brassica napus L. Plant Biol 9(05):647–653

    Article  CAS  PubMed  Google Scholar 

  34. Kloosterman WP, Wienholds E, Ketting RF, Plasterk RHA (2004) Substrate requirements for let-7 function in the developing zebrafish embryo. Nucl Acids Res 32(21):6284–6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B (1997) 14-3-3sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1(1):3–11

    Article  CAS  PubMed  Google Scholar 

  36. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X, Ferrara P, McKeon F, Caput D (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90(4):809–819

    Article  CAS  PubMed  Google Scholar 

  37. Brown T, Mackey K, Du T (2004) Analysis of RNA by northern and slot blot hybridization. Curr Protoc Mol Biol Chapter 4:Unit 4.9. Doi:https://doi.org/10.1002/0471142727.mb0409s67

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex S. Flynt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zia, M.F., Flynt, A.S. (2018). Detection and Verification of Mammalian Mirtrons by Northern Blotting. In: Ørom, U. (eds) miRNA Biogenesis. Methods in Molecular Biology, vol 1823. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-8624-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8624-8_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-8623-1

  • Online ISBN: 978-1-4939-8624-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics