Skip to main content

Optimized Protein–Protein Interaction Network Usage with Context Filtering

  • Protocol
  • First Online:
Computational Cell Biology

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Protein–protein interaction networks (PPIs) collect information on physical—and in some cases–functional interactions between proteins. Most PPIs are annotated with confidence scores, which reflect the probability that a reported interaction is a true interaction. These scores, however, do not allow users to isolate interactions relevant in a particular biological context. Here, we describe solutions for performing context filtering on PPIs to allow biological data interpretation and functional inference in two publicly available PPIs resources (HIPPIE and STRING) and in the proprietary pathway analysis tool and knowledge base Ingenuity Pathway Analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al (2005) Towards a proteome-scale map of the human protein-protein interaction network. Nature 437:1173–1178

    Article  CAS  Google Scholar 

  2. Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA (2012) HIPPIE: integrating protein interaction networks with experiment based quality scores. PLoS One 7:e31826

    Article  CAS  Google Scholar 

  3. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, Foglierini M et al (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33:D433–D437

    Article  Google Scholar 

  4. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41:D808–D815

    Article  CAS  Google Scholar 

  5. Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V et al (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    Article  CAS  Google Scholar 

  6. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G (2002) MINT: a molecular INTeraction database. FEBS Lett 513:135–140

    Article  CAS  Google Scholar 

  7. Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S et al (2004) IntAct: an open source molecular interaction database. Nucleic Acids Res 32:D452–D455

    Article  CAS  Google Scholar 

  8. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M (2006) BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:D535–D539

    Article  CAS  Google Scholar 

  9. Dobay MP, Stertz S, Delorenzi M (2017) Context-based retrieval of functional modules in protein-protein interaction networks. Brief Bioinform

    Google Scholar 

  10. Schaefer MH, Lopes TJ, Mah N, Shoemaker JE, Matsuoka Y, Fontaine JF et al (2013) Adding protein context to the human protein-protein interaction network to reveal meaningful interactions. PLoS Comput Biol 9:e1002860

    Article  CAS  Google Scholar 

  11. Gray KA, Yates B, Seal RL, Wright MW, Bruford EA (2015) Genenames.org: the HGNC resources in 2015. Nucleic Acids Res 43:D1079–D1085

    Article  CAS  Google Scholar 

  12. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    Article  CAS  Google Scholar 

  13. Beyerly E (1962) New medical subject heading lists: a comparative review of American and soviet works. Bull Med Libr Assoc 50:196–202

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  CAS  Google Scholar 

  15. Mi H, Muruganujan A, Casagrande JT, Thomas PD (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc 8:1551–1566

    Article  Google Scholar 

  16. R Development Core Team (2014) R: a language and environment for statistical computing. the R Foundation for Statistical Computing, Vienna

    Google Scholar 

  17. McKusick VA (2007) Mendelian inheritance in man and its online version, OMIM. Am J Hum Genet 80:588–604

    Article  CAS  Google Scholar 

  18. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M et al (2017) The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids Res 45:D362–D368

    Article  Google Scholar 

  19. Pletscher-Frankild S, Palleja A, Tsafou K, Binder JX, Jensen LJ (2015) DISEASES: text mining and data integration of disease-gene associations. Methods 74:83–89

    Article  CAS  Google Scholar 

  20. Gaur P, Munjhal A, Lal SK (2011) Influenza virus and cell signaling pathways. Med Sci Monit 17:RA148–RA154

    Article  Google Scholar 

  21. Ludwig S, Planz O, Pleschka S, Wolff T (2003) Influenza-virus-induced signaling cascades: targets for antiviral therapy? Trends Mol Med 9:46–52

    Article  CAS  Google Scholar 

  22. Eierhoff T, Hrincius ER, Rescher U, Ludwig S, Ehrhardt C (2010) The epidermal growth factor receptor (EGFR) promotes uptake of influenza a viruses (IAV) into host cells. PLoS Pathog 6:e1001099

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swiss Initiative in Systems Biology, SystemsX, through a fellowship (2013/137) provided to M.P.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pamela Dobay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pietrosemoli, N., Dobay, M.P. (2018). Optimized Protein–Protein Interaction Network Usage with Context Filtering. In: von Stechow, L., Santos Delgado, A. (eds) Computational Cell Biology. Methods in Molecular Biology, vol 1819. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8618-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8618-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8617-0

  • Online ISBN: 978-1-4939-8618-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics