Skip to main content

Probing Chromatin Structure with Magnetic Tweezers

  • Protocol
  • First Online:
Nanoscale Imaging

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1814))

Abstract

Magnetic tweezers form a unique tool to study the topology and mechanical properties of chromatin fibers. Chromatin is a complex of DNA and proteins that folds the DNA in such a way that meter-long stretches of DNA fit into the micron-sized cell nucleus. Moreover, it regulates accessibility of the genome to the cellular replication, transcription, and repair machinery. However, the structure and mechanisms that govern chromatin folding remain poorly understood, despite recent spectacular improvements in high-resolution imaging techniques. Single-molecule force spectroscopy techniques can directly measure both the extension of individual chromatin fragments with nanometer accuracy and the forces involved in the (un)folding of single chromatin fibers. Here, we report detailed methods that allow one to successfully prepare in vitro reconstituted chromatin fibers for use in magnetic tweezers-based force spectroscopy. The higher-order structure of different chromatin fibers can be inferred from fitting a statistical mechanics model to the force-extension data. These methods for quantifying chromatin folding can be extended to study many other processes involving chromatin, such as the epigenetic regulation of transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kornberg RD (1977) Structure of chromatin. Ann Rev Biochem 46:931–954

    Article  PubMed  CAS  Google Scholar 

  2. Richmond RK, Sargent DF, Richmond TJ, Luger K, Mader AW (1997) Crystal structure of the nucleosome resolution core particle at 2.8 A. Nature 389:251–260

    Article  PubMed  CAS  Google Scholar 

  3. Dorigo B et al (2004) Nucleosome arrays reveal the two-start organization of the chromatin fiber. Science 306:1571–1573

    Article  CAS  PubMed  Google Scholar 

  4. Chen Q, Yang R, Korolev N, Fa Liu C, Nordenskiöld L (2017) Regulation of nucleosome stacking and chromatin compaction by the histone H4 N-terminal tail -H2A acidic patch interaction. J Mol Biol 429(13):2075–2092

    Article  PubMed  CAS  Google Scholar 

  5. Kaczmarczyk A, Allahverdi A, Brouwer TB, Nordenskiöld L, Dekker NH, van Noort J (2017) Single-molecule force spectroscopy on histone H4 tail cross-linked chromatin reveals fiber folding. J Biol Chem 292:17506–17513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gilbert N, Ramsahoye B (2005) The relationship between chromatin structure and transcriptional activity in mammalian genomes. Brief Funct Genomic Proteomic 4:129–142

    Article  CAS  PubMed  Google Scholar 

  7. Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem 67:545–579

    Article  PubMed  CAS  Google Scholar 

  8. Widom J (2001) Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324

    Article  CAS  PubMed  Google Scholar 

  9. Bowman GD, Poirier MG (2015) Post-translational modifications of histones that influence nucleosome dynamics. Chem Rev 115:2274–2295

    Article  PubMed  CAS  Google Scholar 

  10. Luger K, Richmond TJ (1998) The histone tails of the nucleosome. Curr Opin Genet Dev 8:140–146

    Article  CAS  PubMed  Google Scholar 

  11. Schalch T, Duda S, Sargent DF, Richmond TJ (2005) X-ray structure of a tetranucleosome and its implications for the chromatin fibre. Nature 436:138–141

    Article  PubMed  CAS  Google Scholar 

  12. Grigoryev SA (2012) Nucleosome spacing and chromatin higher-order folding. Nucleus 3:493–499

    Article  PubMed  PubMed Central  Google Scholar 

  13. Robinson PJJ, Fairall L, Huynh V a T, Rhodes D (2006) EM measurements define the dimensions of the ‘30-nm’ chromatin fiber: evidence for a compact, interdigitated structure. Proc Natl Acad Sci U S A 103:6506–6511

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Routh A, Sandin S, Rhodes D (2008) Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105:8872–8877

    Article  PubMed  PubMed Central  Google Scholar 

  15. Song F et al (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380

    Article  PubMed  CAS  Google Scholar 

  16. Krzemien KM et al (2017) Atomic force microscopy of chromatin arrays reveal non-monotonic salt dependence of array compaction in solution. PLoS One 12:e0173459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kruithof M, Chien F, de Jager M, van Noort J (2008) Subpiconewton dynamic force spectroscopy using magnetic tweezers. Biophys J 94:2343–2348

    Article  PubMed  CAS  Google Scholar 

  18. Ordu O, Lusser A, Dekker NH (2016) Recent insights from in vitro single-molecule studies into nucleosome structure and dynamics. Biophys Rev 8:33–49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ribeck N, Saleh OA (2008) Multiplexed single-molecule measurements with magnetic tweezers. Rev Sci Instrum 79:94301

    Article  CAS  Google Scholar 

  20. De Vlaminck I et al (2011) Highly parallel magnetic tweezers by targeted DNA tethering. Nano Lett 11:5489–5493

    Article  CAS  PubMed  Google Scholar 

  21. Lusser A, Kadonaga JT (2004) Strategies for the reconstitution of chromatin. Nat Methods 1:19–26

    Article  PubMed  CAS  Google Scholar 

  22. Huynh VAT, Robinson PJJ, Rhodes D (2005) A method for the in vitro reconstitution of a defined ‘30 nm’ chromatin fibre containing stoichiometric amounts of the linker histone. J Mol Biol 345:957–968

    Article  PubMed  CAS  Google Scholar 

  23. Lowary PT, Widom J (1998) New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42

    Article  PubMed  CAS  Google Scholar 

  24. Flaus A (2011) Principles and practice of nucleosome positioning in vitro. Front Life Sci 5:5–27

    Article  CAS  Google Scholar 

  25. Strick TR, Allemand JF, Bensimon D, Bensimon A, Croquette V (1996) The elasticity of a single supercoiled DNA molecule. Science 271:1835–1837

    Article  PubMed  CAS  Google Scholar 

  26. Yu Z et al (2014) A force calibration standard for magnetic tweezers. Rev Sci Instrum 85:123114

    Article  PubMed  CAS  Google Scholar 

  27. Meng H, Andresen K, van Noort J (2015) Quantitative analysis of single-molecule force spectroscopy on folded chromatin fibers. Nucleic Acids Res 43:3578–3590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Harada Y et al (2001) Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409:113–115

    Article  PubMed  CAS  Google Scholar 

  29. Lansdorp BM, Tabrizi SJ, Dittmore A, Saleh OA (2013) A high-speed magnetic tweezer beyond 10,000 frames per second. Rev Sci Instrum 84:44301

    Article  CAS  Google Scholar 

  30. Cnossen JP, Dulin D, Dekker NH (2014) An optimized software framework for real-time, high-throughput tracking of spherical beads. Cit Rev Sci Instruments 85:103712

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Nicolaas Hermans, He Meng, Kurt Andresen, Orkide Ordu, and Ineke de Boer for the help in establishing these methods. This work was supported by the Netherlands Organisation for Scientific Research (NWO/OCW), as part of the Frontiers of Nanoscience program, by the NWO-VICI research program, project 680-47-616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John van Noort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaczmarczyk, A., Brouwer, T.B., Pham, C., Dekker, N.H., van Noort, J. (2018). Probing Chromatin Structure with Magnetic Tweezers. In: Lyubchenko, Y. (eds) Nanoscale Imaging. Methods in Molecular Biology, vol 1814. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8591-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8591-3_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8590-6

  • Online ISBN: 978-1-4939-8591-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics