Skip to main content

Methods to Investigate the Molecular Basis of Progranulin Actions on Brain and Behavior In Vivo Using Knockout Mice

  • Protocol
  • First Online:
Progranulin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1806))

Abstract

Currently one of the few molecules that equally excites a neuroscientist, a cancer biologist, an immunologist, and a developmental biologist is progranulin (GRN/Grn)—a pluripotent growth factor that plays key roles in cell survival, proliferation, development, tissue regeneration, inflammation, wound healing, and angiogenesis. However, the molecular pathways associated with GRN signaling involved in these varied physiological processes are not understood. Gene inactivation has been considered as one of the best methods to delineate the biological role of a protein, and gene targeting is a direct means to disrupt a gene’s open reading frame and block its expression, for instance, in a mouse. Such a gene knockout animal model also served as an in vivo disease model where loss of gene or its function is thought to be the primary disease mechanism, as is the case with progranulin loss of function in frontotemporal lobar degeneration (FTLD). It is estimated that up to half of the cases of familial, dominant FTLD might be due to GRN haploinsufficiency. To understand the molecular pathways associated with GRN loss, constitutive and conditional progranulin knockout (Grn−/−) mice have also been constructed in several laboratories, including ours. These mice show several disease-characteristic features and suggest that continued studies on the Grn−/− mice would be instructive in the understanding of complex GRN biology in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baker M et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919

    Google Scholar 

  2. Cruts M et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924

    Article  CAS  PubMed  Google Scholar 

  3. Neumann M et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133

    Article  CAS  PubMed  Google Scholar 

  4. Bateman A, Bennett HP (1998) Granulins: the structure and function of an emerging family of growth factors. J Endocrinol 158(2):145–151

    Article  CAS  PubMed  Google Scholar 

  5. Toh H et al (2013) Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model. PLoS One 8(5):e64989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Liau LM et al (2000) Identification of a human glioma-associated growth factor gene, granulin, using differential immuno-absorption. Cancer Res 60(5):1353–1360

    PubMed  CAS  Google Scholar 

  7. Kumar-Singh S (2011) Progranulin and TDP-43: mechanistic links and future directions. J Mol Neurosci 45(3):561–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878

    Article  CAS  PubMed  Google Scholar 

  9. American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J RespirCrit Care Med 171(4):388–416

    Article  Google Scholar 

  10. Martens LH et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Petkau TL et al (2012) Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis 45(2):711–722

    Article  CAS  PubMed  Google Scholar 

  12. Wils H et al (2012) Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol 228(1):67–76

    PubMed  CAS  Google Scholar 

  13. Wils H et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci U S A 107(8):3858–3863

    Article  PubMed  PubMed Central  Google Scholar 

  14. Janssens J et al (2013) Overexpression of ALS-associated p.M337V human TDP-43 in mice worsens disease features compared to wild-type human TDP-43 mice. Mol Neurobiol 48(1):22–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kao AW et al (2011) A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci U S A 108(11):4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yin F et al (2010) Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24(12):4639–4647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Minami SS et al (2014) Progranulin protects against amyloid beta deposition and toxicity in Alzheimer's disease mouse models. Nat Med 20(10):1157–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Filiano AJ et al (2013) Dissociation of Frontotemporal dementia-related deficits and Neuroinflammation in Progranulin Haploinsufficient mice. J Neurosci 33(12):5352–5361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kayasuga Y et al (2007) Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 185(2):110–118

    Article  CAS  PubMed  Google Scholar 

  20. Ghoshal N et al (2012) Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis 45(1):395–408

    Article  CAS  PubMed  Google Scholar 

  21. Ahmed Z et al (2010) Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol 177(1):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Darbinyan A et al (2013) Isolation and propagation of primary human and rodent embryonic neural progenitor cells and cortical neurons. Methods Mol Biol 1078:45–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kleinberger G et al (2010) Increased caspase activation and decreased TDP-43 solubility in progranulin knockout cortical cultures. J Neurochem 115(3):735–747

    Article  CAS  PubMed  Google Scholar 

  24. Ahmed Z et al (2007) Progranulin in frontotemporal lobar degeneration and neuroinflammation. J Neuroinflammation 4:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Kumar-Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boddaert, J., Wils, H., Kumar-Singh, S. (2018). Methods to Investigate the Molecular Basis of Progranulin Actions on Brain and Behavior In Vivo Using Knockout Mice. In: Bateman, A., Bennett, H., Cheung, S. (eds) Progranulin. Methods in Molecular Biology, vol 1806. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8559-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8559-3_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8557-9

  • Online ISBN: 978-1-4939-8559-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics