Skip to main content

In Silico Typing of Classical and Non-classical HLA Alleles from Standard RNA-Seq Reads

  • Protocol
  • First Online:
HLA Typing

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1802))

Abstract

Next-Generation Sequencing (NGS) enables the rapid generation of billions of short nucleic acid sequence fragments (i.e., “sequencing reads”). Especially, the adoption of gene expression profiling using whole transcriptome sequencing (i.e., “RNA-Seq”) has been rapid. Here, we describe an in silico method, seq2HLA, that takes standard RNA-Seq reads as input and determines a sample’s (classical and non-classical) HLA class I and class II types as well as HLA expression. We demonstrate the application of seq2HLA using publicly available RNA-Seq data from the Burkitt’s lymphoma cell line DAUDI and the choriocarcinoma cell line JEG-3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dulberger CL, McMurtrey CP, Hölzemer A et al (2017) Human leukocyte antigen F presents peptides and regulates immunity through interactions with NK cell receptors. Immunity 46(6):1018–1029.e7. https://doi.org/10.1016/j.immuni.2017.06.002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39(Database):D19–D21. https://doi.org/10.1093/nar/gkq1019

    Article  PubMed  CAS  Google Scholar 

  3. Toribio AL, Alako B, Amid C et al (2017) European nucleotide archive in 2016. Nucleic Acids Res 45(D1):D32–D36. https://doi.org/10.1093/nar/gkw1106

    Article  PubMed  CAS  Google Scholar 

  4. Lappalainen I, Almeida-King J, Kumanduri V et al (2015) The European genome-phenome archive of human data consented for biomedical research. Nat Genet 47(7):692–695. https://doi.org/10.1038/ng.3312

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hudson TJ, Anderson W, Artez A et al (2010) International network of cancer genome projects. Nature 464(7291):993–998. https://doi.org/10.1038/nature08987

    Article  PubMed  CAS  Google Scholar 

  6. Tryka KA, Hao L, Sturcke A et al (2014) NCBI’s database of genotypes and phenotypes: DbGaP. Nucleic Acids Res 42(Database issue):D975–D979. https://doi.org/10.1093/nar/gkt1211

    Article  PubMed  CAS  Google Scholar 

  7. Kovalevskaya NV, Whicher C, Richardson TD et al (2016) DNAdigest and repositive: connecting the world of genomic data. PLoS Biol 14(3):e1002418. https://doi.org/10.1371/journal.pbio.1002418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Bernstein MN, Doan A, Dewey CN (2017) MetaSRA: normalized human sample-specific metadata for the sequence read archive. Bioinformatics 33(18):2914–2923. https://doi.org/10.1093/bioinformatics/btx334

    Article  PubMed  PubMed Central  Google Scholar 

  9. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  10. Weinstein JN, Collisson EA, Mills GB et al (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45(10):1113–1120. https://doi.org/10.1038/ng.2764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Castle JC, Kreiter S, Diekmann J et al (2012) Exploiting the mutanome for tumor vaccination. Cancer Res 72(5):1081–1091. https://doi.org/10.1158/0008-5472.CAN-11-3722

    Article  PubMed  CAS  Google Scholar 

  12. Kreiter S, Vormehr M, van de Roemer N et al (2015) Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 520(7549):692–696. https://doi.org/10.1038/nature14426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Sahin U, Derhovanessian E, Miller M et al (2017) Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 547(7662):222–226. https://doi.org/10.1038/nature23003

    Article  PubMed  CAS  Google Scholar 

  14. Vormehr M, Schrörs B, Boegel S et al (2015) Mutanome engineered RNA immunotherapy: towards patient-centered tumor vaccination. J Immunol Res 2015:595363. https://doi.org/10.1155/2015/595363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Algarra I, García-Lora A, Cabrera T et al (2004) The selection of tumor variants with altered expression of classical and nonclassical MHC class I molecules: implications for tumor immune escape. Cancer Immunol Immunother 53(10):904–910. https://doi.org/10.1007/s00262-004-0517-9

    Article  PubMed  CAS  Google Scholar 

  16. Grandis JR, Falkner DM, Melhem MF et al (2000) Human leukocyte antigen class I allelic and haplotype loss in squamous cell carcinoma of the head and neck: clinical and immunogenetic consequences. Clin Cancer Res 6(7):2794–2802

    PubMed  CAS  Google Scholar 

  17. Cock PJA, Antao T, Chang JT et al (2009) Biopython: freely available python tools for computational molecular biology and bioinformatics. Bioinformatics 25(11):1422–1423. https://doi.org/10.1093/bioinformatics/btp163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Langmead B, Trapnell C, Pop M et al (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. https://doi.org/10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Schmitz R, Young RM, Ceribelli M et al (2012) Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature 490(7418):116–120. https://doi.org/10.1038/nature11378

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ferreira LMR, Meissner TB, Mikkelsen TS et al (2016) A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc Natl Acad Sci U S A 113(19):5364–5369. https://doi.org/10.1073/pnas.1602886113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Boegel S, Löwer M, Schäfer M et al (2012) HLA typing from RNA-Seq sequence reads. Genome Med 4(12):102. https://doi.org/10.1186/gm403

    Article  PubMed  PubMed Central  Google Scholar 

  22. Boegel S, Scholtalbers J, Löwer M et al (2015) In silico HLA typing using standard RNA-Seq sequence reads. Methods Mol Biol 1310:247–258. https://doi.org/10.1007/978-1-4939-2690-9_20

    Article  PubMed  Google Scholar 

  23. Boegel S, Löwer M, Bukur T et al (2014) A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines. Oncoimmunology 3(8):e954893. https://doi.org/10.4161/21624011.2014.954893

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mortazavi A, Williams BA, McCue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628. https://doi.org/10.1038/nmeth.1226

    Article  PubMed  CAS  Google Scholar 

  25. Apps R, Murphy SP, Fernando R et al (2009) Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies. Immunology 127(1):26–39. https://doi.org/10.1111/j.1365-2567.2008.03019.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Couzin-Frankel J (2013) Breakthrough of the year 2013. Cancer immunotherapy. Science 342(6165):1432–1433. https://doi.org/10.1126/science.342.6165.1432

    Article  PubMed  CAS  Google Scholar 

  27. Vormehr M, Diken M, Boegel S et al (2016) Mutanome directed cancer immunotherapy. Curr Opin Immunol 39:14–22. https://doi.org/10.1016/j.coi.2015.12.001

    Article  PubMed  CAS  Google Scholar 

  28. Bueno R, Stawiski EW, Goldstein LD et al (2016) Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet 48(4):407–416. https://doi.org/10.1038/ng.3520

    Article  PubMed  CAS  Google Scholar 

  29. Bailey P, Chang DK, Forget M-A et al (2016) Exploiting the neoantigen landscape for immunotherapy of pancreatic ductal adenocarcinoma. Sci Rep 6:35848. https://doi.org/10.1038/srep35848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Scholtalbers J, Boegel S, Bukur T et al (2015) TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression. Genome Med 7:118. https://doi.org/10.1186/s13073-015-0240-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Gloger A, Ritz D, Fugmann T et al (2016) Mass spectrometric analysis of the HLA class I peptidome of melanoma cell lines as a promising tool for the identification of putative tumor-associated HLA epitopes. Cancer Immunol Immunother 65(11):1377–1393. https://doi.org/10.1007/s00262-016-1897-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ritz D, Gloger A, Weide B et al (2016) High-sensitivity HLA class I peptidome analysis enables a precise definition of peptide motifs and the identification of peptides from cell lines and patients’ sera. Proteomics 16(10):1570–1580. https://doi.org/10.1002/pmic.201500445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ et al (2015) Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 14(3):658–673. https://doi.org/10.1074/mcp.M114.042812

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Carlini F, Ferreira V, Buhler S et al (2016) Association of HLA-A and non-classical HLA class I alleles. PLoS One 11(10):e0163570. https://doi.org/10.1371/journal.pone.0163570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boegel, S., Bukur, T., Castle, J.C., Sahin, U. (2018). In Silico Typing of Classical and Non-classical HLA Alleles from Standard RNA-Seq Reads. In: Boegel, S. (eds) HLA Typing. Methods in Molecular Biology, vol 1802. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-8546-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-8546-3_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-8545-6

  • Online ISBN: 978-1-4939-8546-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics