Skip to main content

Techniques for Evaluation of AR Transcriptional Output and Recruitment to DNA

  • Protocol
  • First Online:
Prostate Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1786))

Abstract

Steroid receptors are ligand activated transcription factors whose promoter specificity is regulated by a broad set of coregulators and pioneer factors. Corepressors and coactivators determine receptors’ recruitment to specific regulatory elements and ultimately their transcriptional output. Using androgen receptor (AR) and NCOR1 corepressor as examples, this chapter describes experimental approaches to evaluate recruitment of steroid receptors and their coregulators to DNA and to determine coregulator contribution to the transcriptional output of the receptor. The chromatin immunoprecipitation assay, or ChIP, quantifies protein–DNA interaction in the cellular chromatin environment. Here, we describe a protocol to measure NCOR1 recruitment to AR binding sites of interest using ChIP. Gene Set Enrichment Analysis, GSEA, is a computational technique to determine whether a defined gene set is significantly represented among changes in gene expression between two biological groups. As an example, we examine whether AR repressed genes are significantly represented among genes altered by the NCOR1 knockout.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Narayanan R, Mohler ML, Bohl CE, Miller DD, Dalton JT (2008) Selective androgen receptor modulators in preclinical and clinical development. Nucl Recept Signal 6:e010. https://doi.org/10.1621/nrs.06010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hodgson MC, Shen HC, Hollenberg AN, Balk SP (2008) Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Mol Cancer Ther 7(10):3187–3194. https://doi.org/10.1158/1535-7163.MCT-08-0461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Yang YC, Banuelos CA, Mawji NR, Wang J, Kato M, Haile S, McEwan IJ, Plymate S, Sadar MD (2016) Targeting androgen receptor activation function-1 with EPI to overcome resistance mechanisms in castration-resistant prostate cancer. Clin Cancer Res 22(17):4466–4477. https://doi.org/10.1158/1078-0432.CCR-15-2901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Joseph JD, Wittmann BM, Dwyer MA, Cui H, Dye DA, McDonnell DP, Norris JD (2009) Inhibition of prostate cancer cell growth by second-site androgen receptor antagonists. Proc Natl Acad Sci U S A 106(29):12178–12183. https://doi.org/10.1073/pnas.0900185106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jones A, Hwang DJ, Narayanan R, Miller DD, Dalton JT (2010) Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy. Endocrinology 151(8):3706–3719. https://doi.org/10.1210/en.2010-0150

    Article  PubMed  CAS  Google Scholar 

  6. Kearbey JD, Gao W, Narayanan R, Fisher SJ, Wu D, Miller DD, Dalton JT (2007) Selective Androgen Receptor Modulator (SARM) treatment prevents bone loss and reduces body fat in ovariectomized rats. Pharm Res 24(2):328–335. https://doi.org/10.1007/s11095-006-9152-9

    Article  PubMed  CAS  Google Scholar 

  7. Agoulnik IU, Weigel NL (2008) Androgen receptor coactivators and prostate cancer. Adv Exp Med Biol 617:245–255. https://doi.org/10.1007/978-0-387-69080-3_23

    Article  PubMed  CAS  Google Scholar 

  8. Wang Q, Li W, Liu XS, Carroll JS, Janne OA, Keeton EK, Chinnaiyan AM, Pienta KJ, Brown M (2007) A hierarchical network of transcription factors governs androgen receptor-dependent prostate cancer growth. Mol Cell 27(3):380–392. https://doi.org/10.1016/j.molcel.2007.05.041

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Kazmin D, Prytkova T, Cook CE, Wolfinger R, Chu TM, Beratan D, Norris JD, Chang CY, McDonnell DP (2006) Linking ligand-induced alterations in androgen receptor structure to differential gene expression: a first step in the rational design of selective androgen receptor modulators. Mol Endocrinol 20(6):1201–1217. https://doi.org/10.1210/me.2005-0309

    Article  PubMed  CAS  Google Scholar 

  10. Wang Q, Li W, Zhang Y et al (2009) Androgen receptor regulates a distinct transcription program in androgen-independent prostate cancer. Cell 138(2):245–256. https://doi.org/10.1016/j.cell.2009.04.056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mahajan NP, Liu Y, Majumder S, Warren MR, Parker CE, Mohler JL, Earp HS, Whang YE (2007) Activated Cdc42-associated kinase Ack1 promotes prostate cancer progression via androgen receptor tyrosine phosphorylation. Proc Natl Acad Sci U S A 104(20):8438–8443. https://doi.org/10.1073/pnas.0700420104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Lopez SM, Agoulnik AI, Zhang M et al (2016) Nuclear receptor corepressor 1 expression and output declines with prostate cancer progression. Clin Cancer Res 22(15):3937–3949. https://doi.org/10.1158/1078-0432.CCR-15-1983

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. He B, Lanz RB, Fiskus W et al (2014) GATA2 facilitates steroid receptor coactivator recruitment to the androgen receptor complex. Proc Natl Acad Sci U S A 111(51):18261–18266. https://doi.org/10.1073/pnas.1421415111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Guerrero J, Alfaro IE, Gomez F, Protter AA, Bernales S (2013) Enzalutamide, an androgen receptor signaling inhibitor, induces tumor regression in a mouse model of castration-resistant prostate cancer. Prostate 73(12):1291–1305. https://doi.org/10.1002/pros.22674

    Article  PubMed  CAS  Google Scholar 

  15. Agoulnik IU, Vaid A, Bingman WE 3rd, Erdeme H, Frolov A, Smith CL, Ayala G, Ittmann MM, Weigel NL (2005) Role of SRC-1 in the promotion of prostate cancer cell growth and tumor progression. Cancer Res 65(17):7959–7967. https://doi.org/10.1158/0008-5472.CAN-04-3541

    Article  PubMed  CAS  Google Scholar 

  16. Agoulnik IU, Vaid A, Nakka M et al (2006) Androgens modulate expression of transcription intermediary factor 2, an androgen receptor coactivator whose expression level correlates with early biochemical recurrence in prostate cancer. Cancer Res 66(21):10594–10602. https://doi.org/10.1158/0008-5472.CAN-06-1023

    Article  PubMed  CAS  Google Scholar 

  17. Yan J, Yu CT, Ozen M, Ittmann M, Tsai SY, Tsai MJ (2006) Steroid receptor coactivator-3 and activator protein-1 coordinately regulate the transcription of components of the insulin-like growth factor/AKT signaling pathway. Cancer Res 66(22):11039–11046. https://doi.org/10.1158/0008-5472.CAN-06-2442

    Article  PubMed  CAS  Google Scholar 

  18. Zhang C, Wang L, Wu D et al (2011) Definition of a FoxA1 Cistrome that is crucial for G1 to S-phase cell-cycle transit in castration-resistant prostate cancer. Cancer Res 71(21):6738–6748. https://doi.org/10.1158/0008-5472.CAN-11-1882

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sahu B, Laakso M, Ovaska K et al (2011) Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J 30(19):3962–3976. https://doi.org/10.1038/emboj.2011.328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Wang D, Garcia-Bassets I, Benner C et al (2011) Reprogramming transcription by distinct classes of enhancers functionally defined by eRNA. Nature 474(7351):390–394. https://doi.org/10.1038/nature10006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zwart W, Theodorou V, Kok M, Canisius S, Linn S, Carroll JS (2011) Oestrogen receptor-co-factor-chromatin specificity in the transcriptional regulation of breast cancer. EMBO J 30(23):4764–4776. https://doi.org/10.1038/emboj.2011.368

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mei S, Qin Q, Wu Q et al (2017) Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 45(D1):D658–D662. https://doi.org/10.1093/nar/gkw983

    Article  PubMed  CAS  Google Scholar 

  23. Agoulnik IU, Bingman WE 3rd, Nakka M, Li W, Wang Q, Liu XS, Brown M, Weigel NL (2008) Target gene-specific regulation of androgen receptor activity by p42/p44 mitogen-activated protein kinase. Mol Endocrinol 22(11):2420–2432. https://doi.org/10.1210/me.2007-0481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hodgson MC, Astapova I, Hollenberg AN, Balk SP (2007) Activity of androgen receptor antagonist bicalutamide in prostate cancer cells is independent of NCoR and SMRT corepressors. Cancer Res 67(17):8388–8395. https://doi.org/10.1158/0008-5472.CAN-07-0617

    Article  PubMed  CAS  Google Scholar 

  25. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43):15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gene set enrichment analysis GSEA user guide. http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html. Accessed 16 Jan 2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina U. Agoulnik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, M., Krause, W.C., Agoulnik, I.U. (2018). Techniques for Evaluation of AR Transcriptional Output and Recruitment to DNA. In: Culig, Z. (eds) Prostate Cancer. Methods in Molecular Biology, vol 1786. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7845-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7845-8_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7843-4

  • Online ISBN: 978-1-4939-7845-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics