Skip to main content

Clinical Consequences of Chromothripsis and Other Catastrophic Cellular Events

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

Chromothripsis was initially described as a novel cause of chromosomal rearrangements in cancer cells and was subsequently implicated in the development of gross chromosomal rearrangements in the germline. Other catastrophic cellular events such as chromoanasynthesis and chromoplexy have also been observed in human cells. Such events have been associated with various phenotypes including mental retardation and congenital malformations. Here, we introduce representative cases of human disorders arising from somatic or germline chromothripsis or similar catastrophic events. In this chapter, we use the term “chromoanagenesis” to indicate all catastrophic events including chromothripsis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kurahashi H, Bolor H, Kato T et al (2009) Recent advance in our understanding of the molecular nature of chromosomal abnormalities. J Hum Genet 54(5):253–360. https://doi.org/10.1038/jhg.2009.35

    Article  CAS  PubMed  Google Scholar 

  2. Richardson C, Jasin M (2000) Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405:697–700

    Article  CAS  PubMed  Google Scholar 

  3. Hastings PJ, Lupski JR, Rosenberg SM et al (2009) Mechanisms of change in gene copy number. Nat Rev Genet 10(8):551–564. https://doi.org/10.1038/nrg2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shaikh TH, Kurahashi H, Saitta SC et al (2000) Chromosome 22-specific low copy repeats and the 22q11.2 deletion syndrome: genomic organization and deletion endpoint analysis. Hum Mol Genet 9(4):489–501

    Article  CAS  PubMed  Google Scholar 

  5. Edelmann L, Pandita RK, Spiteri E et al (1999) A common molecular basis for rearrangement disorders on chromosome 22q11. Hum Mol Genet 8(7):1157–1167

    Article  CAS  PubMed  Google Scholar 

  6. Lupski JR (1998) Genomic disorders: structural features of the genome can lead to DNA rearrangements and human disease traits. Trends Genet 14(10):417–422

    Article  CAS  PubMed  Google Scholar 

  7. Kurahashi H, Inagaki H, Ohye T et al (2010) The constitutional t(11;22): implications for a novel mechanism responsible for gross chromosomal rearrangements. Clin Genet 78(4):299–309. https://doi.org/10.1111/j.1399-0004.2010.01445.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee JA, Carvalho CM, Lupski JR (2007) A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131(7):1235–1247

    Article  CAS  PubMed  Google Scholar 

  9. Conrad DF, Bird C, Blackburne B et al (2010) Mutation spectrum revealed by breakpoint sequencing of human germline CNVs. Nat Genet 42(5):385–391. https://doi.org/10.1038/ng.564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144(1):27–40. https://doi.org/10.1016/j.cell.2010.11.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Forment JV, Kaidi A, Jackson SP (2012) Chromothripsis and cancer: causes and consequences of chromosome shattering. Nat Rev Cancer 12(10):663–670. https://doi.org/10.1038/nrc3352

    Article  CAS  PubMed  Google Scholar 

  12. Kloosterman WP, Guryev V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20(10):1916–1924. https://doi.org/10.1093/hmg/ddr073

    Article  CAS  PubMed  Google Scholar 

  13. Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146(6):889–903. https://doi.org/10.1016/j.cell.2011.07.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chiang C, Jacobsen JC, Ernst C et al (2012) Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat Genet 44(4):390–397, S1. https://doi.org/10.1038/ng.2202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ et al (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1(6):648–655. https://doi.org/10.1016/j.celrep.2012.05.009

    Article  CAS  PubMed  Google Scholar 

  16. Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18(11):1630–1638. https://doi.org/10.1038/nm.2988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kurahashi H, Ohye T, Inagaki H et al (2012) Mechanism of complex gross chromosomal rearrangements: a commentary on concomitant microduplications of MECP2 and ATRX in male patients with severe mental retardation. J Hum Genet 57(2):81–83. https://doi.org/10.1038/jhg.2011.143

    Article  CAS  PubMed  Google Scholar 

  18. Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 25(7):937–947. https://doi.org/10.1101/gr.191247.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kato T, Ouchi Y, Inagaki H et al (2017) Genomic characterization of chromosomal insertions: implication for mechanism leading to the chromothripsis. Cytogenet Genome Res. https://doi.org/10.1159/000481586

  20. Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102(6):1785–1796. https://doi.org/10.1016/j.fertnstert.2014.09.006

    Article  PubMed  Google Scholar 

  21. Marchetti F, Essers J, Kanaar R et al (2007) Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. Proc Natl Acad Sci U S A 104(45):17725–17729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522(7555):179–184. https://doi.org/10.1038/nature14493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ly P, Teitz LS, Kim DH et al (2017) Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 19(1):68–75. https://doi.org/10.1038/ncb3450

    Article  CAS  PubMed  Google Scholar 

  24. Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91(5):653–660. https://doi.org/10.1111/cge.12928

    Article  CAS  PubMed  Google Scholar 

  25. Poot M, Haaf T (2015) Mechanisms of origin, phenotypic effects and diagnostic implications of complex chromosome rearrangements. Mol Syndromol 6(3):110–134. https://doi.org/10.1159/000438812

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kloosterman WP, Cuppen E (2013) Chromothripsis in congenital disorders and cancer: similarities and differences. Curr Opin Cell Biol 25(3):341–348. https://doi.org/10.1016/j.ceb.2013.02.008

    Article  CAS  PubMed  Google Scholar 

  27. de Pagter MS, van Roosmalen MJ, Baas AF et al (2015) Chromothripsis in healthy individuals affects multiple protein-coding genes and can result in severe congenital abnormalities in offspring. Am J Hum Genet 96:651–656

    Article  PubMed  PubMed Central  Google Scholar 

  28. Masset H, Hestand MS, Van Esch H et al (2016) A distinct class of chromoanagenesis events characterized by focal copy number gains. Hum Mutat 37:661–668

    Article  CAS  PubMed  Google Scholar 

  29. Pellestor F, Anahory T, Lefort G et al (2011) Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 17(4):476–494. https://doi.org/10.1093/humupd/dmr010

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki E, Shima H, Toki M et al (2017) Complex X-chromosomal rearrangements in two women with ovarian dysfunction: implications for chromothripsis/chromoanasynthesis-dependent and independent origins of complex genomic alterations. Cytogenet Genome Res 150(2):86–92. https://doi.org/10.1159/000455026

    Article  CAS  Google Scholar 

  31. Ochalski ME, Engle N, Wakim A et al (2011) Complex X chromosome rearrangement delineated by array comparative genome hybridization in a woman with premature ovarian insufficiency. Fertil Steril 95:2433.e9–2433.15

    Google Scholar 

  32. Auger J, Bonnet C, Valduga M et al (2013) De novo complex X chromosome rearrangement unmasking maternally inherited CSF2RA deletion in a girl with pulmonary alveolar proteinosis. Am J Med Genet A 161A:2594–2599

    PubMed  Google Scholar 

  33. Zhong Q, Layman LC (2012) Genetic considerations in the patient with turner syndrome—45,X with or without mosaicism. Fertil Steril 98:775–779

    Article  PubMed  PubMed Central  Google Scholar 

  34. McDermott DH, Gao JL, Liu Q et al (2015) Chromothriptic cure of WHIM syndrome. Cell 160:686–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zanardo ÉA, Piazzon FB, Dutra RL et al (2014) Complex structural rearrangement features suggesting chromoanagenesis mechanism in a case of 1p36 deletion syndrome. Mol Gen Genomics 289:1037–1043

    Article  CAS  Google Scholar 

  36. Plaisancié J, Kleinfinger P, Cances C et al (2014) Constitutional chromoanasynthesis: description of a rare chromosomal event in a patient. Eur J Med Genet 57:567–570

    Article  PubMed  Google Scholar 

  37. Kloosterman WP, Koster J, Molenaar JJ (2014) Prevalence and clinical implications of chromothripsis in cancer genomes. Curr Opin Oncol 26:64–67

    Article  CAS  PubMed  Google Scholar 

  38. Mehine M, Kaasinen E, Mäkinen N et al (2013) Characterization of uterine leiomyomas by whole-genome sequencing. N Engl J Med 369:43–53

    Article  CAS  PubMed  Google Scholar 

  39. Storchová Z, Kloosterman WP (2016) The genomic characteristics and cellular origin of chromothripsis. Curr Opin Cell Biol 40:106–113

    Article  PubMed  Google Scholar 

  40. Rode A, Maass KK, Willmund KV et al (2016) Chromothripsis in cancer cells: an update. Int J Cancer 138(10):2322–2333. https://doi.org/10.1002/ijc.29888

    Article  CAS  PubMed  Google Scholar 

  41. Hatch EM, Hetzer MW (2015) Linking micronuclei to chromosome fragmentation. Cell 161:1502–1504

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maki Fukami M.D., Ph.D. or Hiroki Kurahashi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fukami, M., Kurahashi, H. (2018). Clinical Consequences of Chromothripsis and Other Catastrophic Cellular Events. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics