Skip to main content

Genes, Proteins, and Biological Pathways Preventing Chromothripsis

  • Protocol
  • First Online:
Chromothripsis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1769))

Abstract

The highly complex structural genome variations chromothripsis, chromoanasynthesis, and chromoplexy are subsumed under the term chromoanagenesis, which means chromosome rebirth. Precipitated by numerous DNA double-strand breaks, they differ in number of and distances between breakpoints, associated copy number variations, order and orientation of segments, and flanking sequences at joining points. Results from patients with the autosomal dominant cancer susceptibility disorder Li-Fraumeni syndrome implicated somatic TP53 mutations in chromothripsis. TP53 participates in the G2/M phase checkpoint, halting cell cycling after premature chromosome compaction during the second half of the S phase, thus preventing chromosome shattering. By experimental TP53 ablation and micronucleus induction, one or a few isolated chromosomes underwent desynchronized replication and chromothripsis. Secondly, chromothripsis occurred after experimental induction of telomere crisis after which dicentric chromosomes sustained TREX1-mediated resolution of chromosome bridges and kataegis. Third, DNA polymerase Polθ-dependent chromothripsis has been documented. Finally, a family with chromothripsis after L1 element-dependent retrotransposition and Alu/Alu homologous recombination has been reported. Human chromosomal instability syndromes share defects in responses to DNA double-strand breaks, characteristic cell cycle perturbations, elevated rates of micronucleus formation, premature chromosome compaction, and apoptosis. They are also associated with elevated susceptibility to malignant disease, such as medulloblastomas and gliomas in ataxia-telangiectasia, leukemia and lymphoma in Bloom syndrome, and osteosarcoma and soft tissue sarcoma in Werner syndrome. The latter syndrome is characterized by a premature aging-like progressive decline of mesenchymal tissues. In all thus far studied cases, constitutional chromothripsis occurred in the male germline and male patients with defects in the double-strand break response genes ATM, MRE11, BLM, LIG4, WRN, and Ku70 show impaired fertility. Conceivably, chromothripsis may, in a stochastic rather than deterministic way, be implicated in germline structural variation, malignant disease, premature aging, genome mosaicism in somatic tissues, and male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boveri T (1914) Zur Frage der Entstehung maligner Tumoren. Fischer, Jena

    Google Scholar 

  2. Poot M, Haaf T (2015) Mechanisms of origin, phenotypic effects and diagnostic implications of complex chromosome rearrangements. Mol Syndromol 6:110–134

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pellestor F, Anahory T, Lefort G et al (2011) Complex chromosomal rearrangements: origin and meiotic behavior. Hum Reprod Update 17:476–494

    Article  CAS  PubMed  Google Scholar 

  4. Liu P, Carvalho CM, Hastings PJ et al (2012) Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev 22:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu G, Stevens JB, Horne SD et al (2014) Genome chaos: survival strategy during crisis. Cell Cycle 13:528–537

    Article  CAS  PubMed  Google Scholar 

  6. Liu P, Erez A, Nagamani SC et al (2011) Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell 146:889–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stephens PJ, Greenman CD, Fu B et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144:27–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rausch T, Jones DT, Zapatka M et al (2012) Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148:59–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holland AJ, Cleveland DW (2012) Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements. Nat Med 18:1630–1638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang CZ, Leibowitz ML, Pellman D (2013) Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements. Genes Dev 27:2513–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pellestor F, Gatinois V, Puechberty J et al (2014) Chromothripsis: potential origin in gametogenesis and preimplantation cell divisions. A review. Fertil Steril 102:1785–1796

    Article  PubMed  Google Scholar 

  12. Nazaryan-Petersen L, Tommerup N (2016) Chromothripsis and human genetic disease. eLS:1–10. https://doi.org/10.1002/9780470015902.a0024627

  13. Fukami M, Shima H, Suzuki E et al (2017) Catastrophic cellular events leading to complex chromosomal rearrangements in the germline. Clin Genet 91:653–660

    Article  CAS  PubMed  Google Scholar 

  14. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Korbel JO, Campbell PJ (2013) Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–1236

    Article  CAS  PubMed  Google Scholar 

  16. Kloosterman WP, Guryev V, van Roosmalen M et al (2011) Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline. Hum Mol Genet 20:1916–1924

    Article  CAS  PubMed  Google Scholar 

  17. Kloosterman WP, Tavakoli-Yaraki M, van Roosmalen MJ (2012) Constitutional chromothripsis rearrangements involve clustered double-stranded DNA breaks and nonhomologous repair mechanisms. Cell Rep 1:648–655

    Article  CAS  PubMed  Google Scholar 

  18. Ratnaparkhe M, Hlevnjak M, Kolb T et al (2017) Genomic profiling of acute lymphoblastic leukemia in ataxia telangiectasia patients reveals tight link between ATM mutations and chromothripsis. Leukemia 31(10):2048–2056. https://doi.org/10.1038/leu.2017.55

    Article  CAS  PubMed  Google Scholar 

  19. Masset H, Hestand MS, Van Esch H et al (2016) A distinct class of chromoanagenesis events characterized by focal copy number gains. Hum Mutat 37:661–668

    Article  CAS  PubMed  Google Scholar 

  20. Nazaryan-Petersen L, Bertelsen B, Bak M et al (2016) Germline chromothripsis driven by L1-mediated retrotransposition and Alu/Alu homologous recombination. Hum Mutat 37:385–395

    Article  CAS  PubMed  Google Scholar 

  21. Zhang CZ, Spektor A, Cornils H et al (2015) Chromothripsis from DNA damage in micronuclei. Nature 522:179–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maciejowski J, Li Y, Bosco N et al (2015) Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang J, Liu J, Ouyang L et al (2016) CTLPScanner: a web server for chromothripsis-like pattern detection. Nucleic Acids Res 44:W252–W258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nazaryan L, Stefanou EG, Hansen C et al (2014) The strength of combined cytogenetic and mate-pair sequencing techniques illustrated by a germline chromothripsis rearrangement involving FOXP2. Eur J Hum Genet 22:338–343

    Article  CAS  PubMed  Google Scholar 

  25. Weckselblatt B, Rudd MK (2015) Human structural variation: mechanisms of chromosome rearrangements. Trends Genet 31:587–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weckselblatt B, Hermetz KE, Rudd MK (2015) Unbalanced translocations arise from diverse mutational mechanisms including chromothripsis. Genome Res 25:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcozzi A, Pellestor F, Kloosterman WP (2017) The genomic characteristics and origin of chromothripsis. In: Pellestor F (ed) Chromothripsis. Springer, New York

    Google Scholar 

  28. Kastan MB, Bartek J (2004) Cell-cycle checkpoints and cancer. Nature 432:316–323

    Article  CAS  PubMed  Google Scholar 

  29. Meyerson M, Pellman D (2011) Cancer genomes evolve by pulverizing single chromosomes. Cell 144:9–10

    Article  CAS  PubMed  Google Scholar 

  30. Crasta K, Ganem NJ, Dagher R et al (2012) DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Poot M, Hoehn H, Rünger TM et al (1992) Impaired S-phase transit of Werner syndrome cells expressed in lymphoblastoid cell lines. Exp Cell Res 202:267–273

    Article  CAS  PubMed  Google Scholar 

  32. Poot M, Gollahon KA, Rabinovitch PS (1999) Werner syndrome lymphoblastoid cells are sensitive to camptothecin-induced apoptosis in S phase. Hum Genet 104:10–14

    Article  CAS  PubMed  Google Scholar 

  33. Honma M, Tadokoro S, Sakamoto H et al (2002) Chromosomal instability in B-lymphoblasotoid cell lines from Werner and Bloom syndrome patients. Mutat Res 520:15–24

    Article  CAS  PubMed  Google Scholar 

  34. Trkova M, Prochazkova K, Krutilkova V et al (2007) Telomere length in peripheral blood cells of germline TP53 mutation carriers is shorter than that of normal individuals of corresponding age. Cancer 110:694–702

    Article  CAS  PubMed  Google Scholar 

  35. Tusell L, Pampalona J, Soler D et al (2010) Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans 38:1698–1703

    Article  CAS  PubMed  Google Scholar 

  36. Thanasoula M, Escandell JM, Martinez P et al (2010) p53 prevents entry into mitosis with uncapped telomeres. Curr Biol 20:521–526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haaf T, Raderschall E, Reddy G et al (1999) Sequestration of mammalian Rad51-recombination protein into micronuclei. J Cell Biol 144:11–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Darzynkiewicz Z, Li X, Bedner E (2001) Use of flow and laser-scanning cytometry in analysis of cell death. Methods Cell Biol 66:69–109

    Article  CAS  PubMed  Google Scholar 

  39. Sakofsky CJ, Ayyar S, Deem AK et al (2015) Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol Cell 60:860–872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahmed EA, Sfeir A, Takai H et al (2013) Ku70 and non-homologous end joining protect testicular cells from DNA damage. J Cell Sci 126:3095–3104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Den Boer PJ, Poot M, Verkerk A et al (1990) Glutathione-dependent defence mechanisms in isolated round spermatids from the rat. Int J Androl 13:26–38

    Article  Google Scholar 

  42. Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18(3):175–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Roberts SA, Sterling J, Thompson C et al (2012) Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol Cell 46:424–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Roberts SA, Gordenin DA (2014) Hypermutation in human cancer genomes: footprints and mechanisms. Nat Rev Cancer 14:786–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cai H, Kumar N, Bagheri HC et al (2014) Chromothripsis-like patterns are recurring but heterogeneously distributed features in a survey of 22,347 cancer genome screens. BMC Genomics 15:82. https://doi.org/10.1186/1471-2164-15-82

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rode A, Maass KK, Willmund KV et al (2016) Chromothripsis in cancer cells: an update. Int J Cancer 138:2322–2333

    Article  CAS  PubMed  Google Scholar 

  47. Beck CR, Collier P, Macfarlane C et al (2010) LINE-1 retrotransposition activity in human genomes. Cell 141:1159–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Startek M, Szafranski P, Gambin T et al (2015) Genome-wide analyses of LINE-LINE-mediated nonallelic homologous recombination. Nucleic Acids Res 43:2188–2198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bertelsen B, Nazaryan-Petersen L, Sun W et al (2016) A germline chromothripsis event stably segregating in 11 individuals through three generations. Genet Med 18:494–500

    Article  PubMed  Google Scholar 

  50. Lieber MR (2010) The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Georgiou I, Noutsopoulos D, Dimitriadou E et al (2009) Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes. Hum Mol Genet 18:1221–1228

    Article  CAS  PubMed  Google Scholar 

  52. McConnell MJ, Lindberg MR, Brennand KJ et al (2013) Mosaic copy number variation in human neurons. Science 342:632–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Erwin JA, Paquola AC, Singer T et al (2016) L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 19:1583–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rulten SL, Grundy GJ (2017) Non-homologous end joining: common interaction sites and exchange of multiple factors in the DNA repair process. Bioessays 39. https://doi.org/10.1002/bies.201600209

  55. Hustedt N, Durocher D (2016) The control of DNA repair by the cell cycle. Nat Cell Biol 19:1–9

    Article  PubMed  Google Scholar 

  56. Pierce AJ, Jasin M (2001) NHEJ deficiency and disease. Mol Cell 8:1160–1161

    Article  CAS  PubMed  Google Scholar 

  57. Patro BS, Frøhlich R, Bohr VA et al (2011) WRN helicase regulates the ATR-CHK1-induced S-phase checkpoint pathway in response to topoisomerase-I-DNA covalent complexes. J Cell Sci 124:3967–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Su F, Mukherjee S, Yang Y et al (2014) Nonenzymatic role for WRN in preserving nascent DNA strands after replication stress. Cell Rep 9:1387–1401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Shamanna RA, Lu H, de Freitas JK et al (2016) WRN regulates pathway choice between classical and alternative non-homologous end joining. Nat Commun 7:13785. https://doi.org/10.1038/ncomms13785

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rünger TM, Bauer C, Dekant B et al (1994) Hypermutable ligation of plasmid DNA ends in cells from patients with Werner syndrome. J Invest Dermatol 102:45–48

    Article  PubMed  Google Scholar 

  61. Palermo V, Rinalducci S, Sanchez M et al (2016) CDK1 phosphorylates WRN at collapsed replication forks. Nat Commun 7:12880. https://doi.org/10.1038/ncomms12880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu L, Hickson ID (2001) Molecular biology. DNA ends ReQ-uire attention. Science 292:229–230

    Article  CAS  PubMed  Google Scholar 

  63. Cejka P, Cannavo E, Polaczek P et al (2010) DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2. Nature 467:112–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Grabarz A, Guirouilh-Barbat J, Barascu A et al (2013) A role for BLM in double-strand break repair pathway choice: prevention of CtIP/Mre11-mediated alternative nonhomologous end-joining. Cell Rep 5:21–28

    Article  CAS  PubMed  Google Scholar 

  65. Sturzenegger A, Burdova K, Kanagaraj R et al (2014) DNA2 cooperates with the WRN and BLM RecQ helicases to mediate long-range DNA end resection in human cells. J Biol Chem 289:27314–27326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Goto M, Miller RW, Ishikawa Y et al (1996) Excess of rare cancers in Werner syndrome (adult progeria). Cancer Epidemiol Biomark Prev 5:239–246

    CAS  Google Scholar 

  67. Poot M, Yom JS, Whang SH et al (2001) Werner syndrome cells are sensitive to DNA cross-linking drugs. FASEB J 15:1224–1226

    Article  CAS  PubMed  Google Scholar 

  68. Poot M, Gollahon KA, Emond MJ et al (2002) Werner syndrome diploid fibroblasts are sensitive to 4-nitroquinoline-N-oxide and 8-methoxypsoralen: implications for the disease phenotype. FASEB J 16:757–758

    Article  CAS  PubMed  Google Scholar 

  69. Poot M, Jin X, Hill JP et al (2004) Distinct functions for WRN and TP53 in a shared pathway of cellular response to 1-beta-D-arabinofuranosylcytosine and bleomycin. Exp Cell Res 296:327–336

    Article  CAS  PubMed  Google Scholar 

  70. Epstein CJ, Martin GM, Schultz AL et al (1966) Werner’s syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45:177–221

    Article  CAS  Google Scholar 

  71. Rünger TM, Poot M, Kraemer KH (1992) Abnormal processing of transfected plasmid DNA in cells from patients with ataxia telangiectasia. Mutat Res 293:47–54

    Article  PubMed  Google Scholar 

  72. O’Driscoll M, Jeggo PA (2006) The role of double-strand break repair -insights from human genetics. Nat Rev Genet 7:45–54

    Article  PubMed  Google Scholar 

  73. Scott SP, Pandita TK (2006) The cellular control of DNA double-strand breaks. J Cell Biochem 99:1463–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Salk D, Au K, Hoehn H, Martin GM (1981) Cytogenetics of Werner’s syndrome cultured skin fibroblasts: variegated translocation mosaicism. Cytogenet Cell Genet 30:92–107

    Article  CAS  PubMed  Google Scholar 

  75. Fukuchi K, Martin GM, Monnat RJ Jr (1989) Mutator phenotype of Werner syndrome is characterized by extensive deletions. Proc Natl Acad Sci U S A 86:5893–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ogburn CE, Oshima J, Poot M et al (1997) An apoptosis-inducing genotoxin differentiates heterozygotic carriers for Werner helicase mutations from wild-type and homozygous mutants. Hum Genet 101:121–125

    Article  CAS  PubMed  Google Scholar 

  77. Kamath-Loeb AS, Loeb LA, Johansson E et al (2001) Interactions between the Werner syndrome helicase and DNA polymerase delta specifically facilitate copying of tetraplex and hairpin structures of the d(CGG)n trinucleotide repeat sequence. J Biol Chem 276:16439–16446

    Article  CAS  PubMed  Google Scholar 

  78. Dhillon KK, Sidorova J, Saintigny Y et al (2007) Functional role of the Werner syndrome RecQ helicase in human fibroblasts. Aging Cell 6:53–61

    Article  CAS  PubMed  Google Scholar 

  79. Rosin MP, German J (1985) Evidence for chromosome instability in vivo in Bloom syndrome: increased numbers of micronuclei in exfoliated cells. Hum Genet 71:187–191

    Article  CAS  PubMed  Google Scholar 

  80. Li GC, Ouyang H, Li X (1998) Ku70: a candidate tumor suppressor gene for murine T cell lymphoma. Mol Cell 2:1–8

    Article  CAS  PubMed  Google Scholar 

  81. Suzuki T, Yasui M, Honma M (2016) Mutator phenotype and DNA double-strand break repair in BLM helicase-deficient human cells. Mol Cell Biol 36:2877–2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Imamura O, Fujita K, Shimamoto A et al (2001) Bloom helicase is involved in DNA surveillance in early S phase in vertebrate cells. Oncogene 20:1143–1151

    Article  CAS  PubMed  Google Scholar 

  83. Simsek D, Jasin M (2010) Alternative end-joining is suppressed by the canonical NHEJ component Xrcc4-ligase IV during chromosomal translocation formation. Nat Struct Mol Biol 17:410–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baillie JK, Barnett MW, Upton KR et al (2011) Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Poot, M. (2018). Genes, Proteins, and Biological Pathways Preventing Chromothripsis. In: Pellestor, F. (eds) Chromothripsis. Methods in Molecular Biology, vol 1769. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7780-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7780-2_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7779-6

  • Online ISBN: 978-1-4939-7780-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics