Skip to main content

Using WormBase: A Genome Biology Resource for Caenorhabditis elegans and Related Nematodes

  • Protocol
  • First Online:
Eukaryotic Genomic Databases

Abstract

WormBase (www.wormbase.org) provides the nematode research community with a centralized database for information pertaining to nematode genes and genomes. As more nematode genome sequences are becoming available and as richer data sets are published, WormBase strives to maintain updated information, displays, and services to facilitate efficient access to and understanding of the knowledge generated by the published nematode genetics literature. This chapter aims to provide an explanation of how to use basic features of WormBase, new features, and some commonly used tools and data queries. Explanations of the curated data and step-by-step instructions of how to access the data via the WormBase website and available data mining tools are provided.

The members of the WormBase Consortium are listed in the Acknowledgements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harris TW, Baran J, Bieri T et al (2014) WormBase 2014: new views of curated biology. Nucleic Acids Res 42:D789–D793. https://doi.org/10.1093/nar/gkt1063

    Article  PubMed  CAS  Google Scholar 

  2. Howe KL, Bolt BJ, Cain S et al (2016) WormBase 2016: expanding to enable helminth genomic research. Nucleic Acids Res 44:D774–D780. https://doi.org/10.1093/nar/gkv1217

    Article  CAS  PubMed  Google Scholar 

  3. C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018.

    Google Scholar 

  4. Nakamura Y, Cochrane G, Karsch-Mizrachi I, International Nucleotide Sequence Database Collaboration (2013) The International Nucleotide Sequence Database Collaboration. Nucleic Acids Res 41:D21–D24. https://doi.org/10.1093/nar/gks1084

    Article  PubMed  CAS  Google Scholar 

  5. Stein LD, Mungall C, Shu S et al (2002) The generic genome browser: a building block for a model organism system database. Genome Res 12:1599–1610. https://doi.org/10.1101/gr.403602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Skinner ME, Uzilov AV, Stein LD et al (2009) JBrowse: a next-generation genome browser. Genome Res 19:1630–1638. https://doi.org/10.1101/gr.094607.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gerstein MB, ZJ L, Van Nostrand EL et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787. https://doi.org/10.1126/science.1196914

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Camacho C, Coulouris G, Avagyan V et al (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Mitchell A, Chang H-Y, Daugherty L et al (2015) The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res 43:D213–D221. https://doi.org/10.1093/nar/gku1243

    Article  PubMed  Google Scholar 

  12. Gene Ontology Consortium (2015) Gene Ontology Consortium: going forward. Nucleic Acids Res 43:D1049–D1056. https://doi.org/10.1093/nar/gku1179

    Article  CAS  Google Scholar 

  13. Finn RD, Bateman A, Clements J et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230. https://doi.org/10.1093/nar/gkt1223

    Article  PubMed  CAS  Google Scholar 

  14. Powell S, Forslund K, Szklarczyk D et al (2014) eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42:D231–D239. https://doi.org/10.1093/nar/gkt1253

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Coghlan A, Ruan J et al (2006) TreeFam: a curated database of phylogenetic trees of animal gene families. Nucleic Acids Res 34:D572–D580. https://doi.org/10.1093/nar/gkj118

    Article  PubMed  CAS  Google Scholar 

  16. Vilella AJ, Severin J, Ureta-Vidal A et al (2009) EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 19:327–335. https://doi.org/10.1101/gr.073585.107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. The Gene Ontology Consortium (2017) Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45:D331–D338. https://doi.org/10.1093/nar/gkw1108

    Article  CAS  Google Scholar 

  18. Lee RYN, Sternberg PW (2003) Building a cell and anatomy ontology of Caenorhabditis elegans. Comp Funct Genomics 4:121–126. https://doi.org/10.1002/cfg.248

    Article  PubMed  PubMed Central  Google Scholar 

  19. Schriml LM, Arze C, Nadendla S et al (2012) Disease Ontology: a backbone for disease semantic integration. Nucleic Acids Res 40:D940–D946. https://doi.org/10.1093/nar/gkr972

    Article  CAS  PubMed  Google Scholar 

  20. Schindelman G, Fernandes JS, Bastiani CA et al (2011) Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community. BMC Bioinformatics 12:32. https://doi.org/10.1186/1471-2105-12-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Huntley RP, Harris MA, Alam-Faruque Y et al (2014) A method for increasing expressivity of Gene Ontology annotations using a compositional approach. BMC Bioinformatics 15:155. https://doi.org/10.1186/1471-2105-15-155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Gaudet P, Livstone MS, Lewis SE, Thomas PD (2011) Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform 12:449–462. https://doi.org/10.1093/bib/bbr042

    Article  PubMed  PubMed Central  Google Scholar 

  23. Huntley RP, Sawford T, Mutowo-Meullenet P et al (2015) The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res 43:D1057–D1063. https://doi.org/10.1093/nar/gku1113

    Article  CAS  PubMed  Google Scholar 

  24. Burge S, Kelly E, Lonsdale D et al (2012) Manual GO annotation of predictive protein signatures: the InterPro approach to GO curation. Database (Oxford) 2012:bar068. https://doi.org/10.1093/database/bar068

    Article  PubMed Central  CAS  Google Scholar 

  25. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515. https://doi.org/10.1038/nbt.1621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Trapnell C, Roberts A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578. https://doi.org/10.1038/nprot.2012.016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Zhong W, Sternberg PW (2006) Genome-wide prediction of C. elegans genetic interactions. Science 311:1481–1484. https://doi.org/10.1126/science.1123287

    Article  PubMed  CAS  Google Scholar 

  28. Lee I, Lehner B, Crombie C et al (2008) A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat Genet 40:181–188. https://doi.org/10.1038/ng.2007.70

    Article  PubMed  CAS  Google Scholar 

  29. Lee I, Lehner B, Vavouri T et al (2010) Predicting genetic modifier loci using functional gene networks. Genome Res 20:1143–1153. https://doi.org/10.1101/gr.102749.109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Rual J-F, Ceron J, Koreth J et al (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14:2162–2168. https://doi.org/10.1101/gr.2505604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kamath RS, Fraser AG, Dong Y et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237. https://doi.org/10.1038/nature01278

    Article  PubMed  CAS  Google Scholar 

  32. Culetto E, Sattelle DB (2000) A role for Caenorhabditis elegans in understanding the function and interactions of human disease genes. Hum Mol Genet 9:869–877

    Article  CAS  PubMed  Google Scholar 

  33. Artal-Sanz M, de Jong L, Tavernarakis N (2006) Caenorhabditis elegans: a versatile platform for drug discovery. Biotechnol J 1:1405–1418. https://doi.org/10.1002/biot.200600176

    Article  PubMed  CAS  Google Scholar 

  34. Giacomotto J, Ségalat L (2010) High-throughput screening and small animal models, where are we? Br J Pharmacol 160:204–216. https://doi.org/10.1111/j.1476-5381.2010.00725.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. O’Reilly LP, Luke CJ, Perlmutter DH et al (2014) C. elegans in high-throughput drug discovery. Adv Drug Deliv Rev 69–70:247–253. https://doi.org/10.1016/j.addr.2013.12.001

    Article  PubMed  CAS  Google Scholar 

  36. Li J, Le W (2013) Modeling neurodegenerative diseases in Caenorhabditis elegans. Exp Neurol 250:94–103. https://doi.org/10.1016/j.expneurol.2013.09.024

    Article  PubMed  CAS  Google Scholar 

  37. Alexander AG, Marfil V, Li C (2014) Use of Caenorhabditis elegans as a model to study Alzheimer’s disease and other neurodegenerative diseases. Front Genet 5:279. https://doi.org/10.3389/fgene.2014.00279

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. O’Hagan R, Wang J, Barr MM (2014) Mating behavior, male sensory cilia, and polycystins in Caenorhabditis elegans. Semin Cell Dev Biol 33:25–33. https://doi.org/10.1016/j.semcdb.2014.06.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Blacque OE, Sanders AAWM (2014) Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 10:126–137. https://doi.org/10.4161/org.28830

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee S-J, Gartner A, Hyun M et al (2010) The Caenorhabditis elegans Werner syndrome protein functions upstream of ATR and ATM in response to DNA replication inhibition and double-strand DNA breaks. PLoS Genet 6:e1000801. https://doi.org/10.1371/journal.pgen.1000801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zheng J, Greenway FL (2012) Caenorhabditis elegans as a model for obesity research. Int J Obes (Lond) 36:186–194. https://doi.org/10.1038/ijo.2011.93

    Article  CAS  Google Scholar 

  42. Park K-W, Li L (2011) Prion protein in Caenorhabditis elegans: distinct models of anti-BAX and neuropathology. Prion 5:28–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kibbe WA, Arze C, Felix V et al (2015) Disease Ontology 2015 update: an expanded and updated database of human diseases for linking biomedical knowledge through disease data. Nucleic Acids Res 43:D1071–D1078. https://doi.org/10.1093/nar/gku1011

    Article  PubMed  CAS  Google Scholar 

  44. Amberger JS, Bocchini CA, Schiettecatte F et al (2015) OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res 43:D789–D798. https://doi.org/10.1093/nar/gku1205

    Article  PubMed  CAS  Google Scholar 

  45. Bretscher AJ, Kodama-Namba E, Busch KE et al (2011) Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69:1099–1113. https://doi.org/10.1016/j.neuron.2011.02.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Smith RN, Aleksic J, Butano D et al (2012) InterMine: a flexible data warehouse system for the integration and analysis of heterogeneous biological data. Bioinformatics 28:3163–3165. https://doi.org/10.1093/bioinformatics/bts577

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kalderimis A, Lyne R, Butano D et al (2014) InterMine: extensive web services for modern biology. Nucleic Acids Res 42:W468–W472. https://doi.org/10.1093/nar/gku301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lyne R, Smith R, Rutherford K et al (2007) FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biol 8:R129. https://doi.org/10.1186/gb-2007-8-7-r129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Motenko H, Neuhauser SB, O’Keefe M, Richardson JE (2015) MouseMine: a new data warehouse for MGI. Mamm Genome 26:325–330. https://doi.org/10.1007/s00335-015-9573-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Balakrishnan R, Park J, Karra K et al (2012) YeastMine--an integrated data warehouse for Saccharomyces cerevisiae data as a multipurpose tool-kit. Database (Oxford) 2012:bar062. https://doi.org/10.1093/database/bar062

    Article  CAS  Google Scholar 

  51. Contrino S, Smith RN, Butano D et al (2012) modMine: flexible access to modENCODE data. Nucleic Acids Res 40:D1082–D1088. https://doi.org/10.1093/nar/gkr921

    Article  PubMed  CAS  Google Scholar 

  52. Rhee DB, Croken MM, Shieh KR et al (2015) toxoMine: an integrated omics data warehouse for Toxoplasma gondii systems biology research. Database (Oxford) 2015:bav066. https://doi.org/10.1093/database/bav066

    Article  CAS  Google Scholar 

  53. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  54. Kent WJ (2002) BLAT--the BLAST-like alignment tool. Genome Res 12:656–664. https://doi.org/10.1101/gr.229202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Angeles-Albores D, N Lee RY, Chan J, Sternberg PW (2016) Tissue enrichment analysis for C. elegans genomics. BMC Bioinformatics 17:366. https://doi.org/10.1186/s12859-016-1229-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. WormAtlas, Altun ZF, Herndon LA, Wolkow CA, Crocker C, Lints R, Hall DH (eds) (2002–2017). http://www.wormatlas.org. Accessed 10 Apr 2017

  57. Greenwald I (2016) WormBook: WormBiology for the 21st Century. Genetics 202:883–884. https://doi.org/10.1534/genetics.116.187575

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

WormBase is supported by grant #U41 HG002223 from the National Human Genome Research Institute at the US National Institutes of Health, the UK Medical Research Council and the UK Biotechnology and Biological Sciences Research Council. At the time of writing, the WormBase Consortium included Paul W. Sternberg, Paul Kersey, Matthew Berriman, Lincoln Stein, Tim Schedl, Todd Harris, Scott Cain, Sibyl Gao, Paulo Nuin, Adam Wright, Kevin Howe, Bruce Bolt, Paul Davis, Michael Paulini, Faye Rodgers, Matthew Russell, Myriam Shafie, Gary Williams, Juancarlos Chan, Wen J. Chen, Christian Grove, Ranjana Kishore, Raymond Lee, Hans-Michael Müller, Cecilia Nakamura, Daniela Raciti, Gary Schindelman, Mary Ann Tuli, Kimberly Van Auken, Daniel Wang, and Karen Yook.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Christian Grove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Grove, C. et al. (2018). Using WormBase: A Genome Biology Resource for Caenorhabditis elegans and Related Nematodes. In: Kollmar, M. (eds) Eukaryotic Genomic Databases. Methods in Molecular Biology, vol 1757. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7737-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7737-6_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7736-9

  • Online ISBN: 978-1-4939-7737-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics