Skip to main content

Microfluidic Devices for Examining the Physical Limits of Migration in Confined Environments

  • Protocol
  • First Online:
Cell Migration

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1749))

Abstract

Cell migration plays a key role in many physiological and pathological conditions during which cells migrate primarily in the 3D environments formed by tissues. Microfluidics enables the design of simple devices that can mimic in a highly controlled manner the geometry and dimensions of the interstices encountered by cells in the body. Here we describe the design, fabrication, and implementation of an array of channels with a range of cross sections to investigate migration of cells and cell clusters through confined spaces. By combining this assay with a motorized microscope stage, image data can be acquired with high throughput to determine the physical limits of migration in confined environments and their biological origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Theveneau E, Mayor R (2012) Neural crest delamination and migration: from epithelium-to-mesenchyme transition to collective cell migration. Dev Biol 366(1):34–54. https://doi.org/10.1016/j.ydbio.2011.12.041

    Article  CAS  PubMed  Google Scholar 

  2. Friedl P, Gilmour D (2009) Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 10(7):445–457. https://doi.org/10.1038/nrm2720

    Article  CAS  PubMed  Google Scholar 

  3. Friedl P, Weigelin B (2008) Interstitial leukocyte migration and immune function. Nat Immunol 9(9):960–969. https://doi.org/10.1038/ni.f.212

    Article  CAS  PubMed  Google Scholar 

  4. Woodfin A, Voisin MB, Nourshargh S (2010) Recent developments and complexities in neutrophil transmigration. Curr Opin Hematol 17(1):9–17. https://doi.org/10.1097/MOH.0b013e3283333930

    Article  PubMed  PubMed Central  Google Scholar 

  5. Friedl P, Alexander S (2011) Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009. https://doi.org/10.1016/j.cell.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  6. Wilson K, Lewalle A, Fritzsche M, Thorogate R, Duke T, Charras G (2013) Mechanisms of leading edge protrusion in interstitial migration. Nat Commun 4:2896. https://doi.org/10.1038/ncomms3896

    Article  CAS  PubMed  Google Scholar 

  7. Bergert M, Erzberger A, Desai RA, Aspalter IM, Oates AC, Charras G, Salbreux G, Paluch EK (2015) Force transmission during adhesion-independent migration. Nat Cell Biol 17(4):524–529. https://doi.org/10.1038/ncb3134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruprecht V, Wieser S, Callan-Jones A, Smutny M, Morita H, Sako K, Barone V, Ritsch-Marte M, Sixt M, Voituriez R, Heisenberg CP (2015) Cortical contractility triggers a stochastic switch to fast amoeboid cell motility. Cell 160(4):673–685. https://doi.org/10.1016/j.cell.2015.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuze M, Takaki T, Voituriez R, Piel M (2015) Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160(4):659–672. https://doi.org/10.1016/j.cell.2015.01.007

    Article  CAS  PubMed  Google Scholar 

  10. Stroka KM, Jiang H, Chen SH, Tong Z, Wirtz D, Sun SX, Konstantopoulos K (2014) Water permeation drives tumor cell migration in confined microenvironments. Cell 157(3):611–623. https://doi.org/10.1016/j.cell.2014.02.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Malboubi M, Jayo A, Parsons M, Charras G (2015) An open access microfluidic device for the study of the physical limits of cancer cell deformation during migration in confined environments. Microelectron Eng 144:42–45. https://doi.org/10.1016/j.mee.2015.02.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jayo A, Malboubi M, Antoku S, Chang W, Ortiz-Zapater E, Groen C, Pfisterer K, Tootle T, Charras G, Gundersen GG, Parsons M (2016) Fascin regulates nuclear movement and deformation in migrating cells. Dev Cell 38(4):371–383. https://doi.org/10.1016/j.devcel.2016.07.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kuriyama S, Theveneau E, Benedetto A, Parsons M, Tanaka M, Charras G, Kabla A, Mayor R (2014) In vivo collective cell migration requires an LPAR2-dependent increase in tissue fluidity. J Cell Biol 206(1):113–127. https://doi.org/10.1083/jcb.201402093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tabeling P (2010) Introduction to microfluidics. Oxford University Press, Oxford

    Google Scholar 

  15. Folch A (2012) Introduction to BioMEMs. CRC Press, Boca Raton, FL

    Google Scholar 

  16. Lake M, Narciso C, Cowdrick K, Storey T, Zhang S, Zartman J, Hoelzle D (2015) Microfluidic device design, fabrication, and testing protocols. Protocol Exchange. https://doi.org/10.1038/protex.2015.069

  17. Millet LJ, Stewart ME, Sweedler JV, Nuzzo RG, Gillette MU (2007) Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7(8):987–994. https://doi.org/10.1039/b705266a

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Charras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Malboubi, M., Jayo, A., Parsons, M., Charras, G. (2018). Microfluidic Devices for Examining the Physical Limits of Migration in Confined Environments. In: Gautreau, A. (eds) Cell Migration. Methods in Molecular Biology, vol 1749. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7701-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7701-7_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7700-0

  • Online ISBN: 978-1-4939-7701-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics