Skip to main content

Initiation, Progression, and Genetic Manipulation of Leaf Senescence

  • Protocol
  • First Online:
Plant Senescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1744))

Abstract

As a representative form of plant senescence, leaf senescence has received the most attention during the last two decades. In this chapter we summarize the initiation of leaf senescence by various internal and external signals, the progression of senescence including switches in gene expression, as well as changes at the biochemical and cellular levels during leaf senescence. Impacts of leaf senescence in agriculture and genetic approaches that have been used in manipulating leaf senescence of crop plants are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guo YF, Gan SS (2005) Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71:83–112

    Article  CAS  PubMed  Google Scholar 

  2. Lim PO, Kim HJ, Gil Nam H (2007) Leaf senescence. Annu Rev Plant Biol 58:115–136

    Article  CAS  PubMed  Google Scholar 

  3. Noodén LD (1988) The phenomenon of senescence and aging. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 1–50

    Google Scholar 

  4. Jibran R, Hunter D, Dijkwel P (2013) Hormonal regulation of leaf senescence through integration of developmental and stress signals. Plant Mol Biol 82:547–561

    Article  CAS  PubMed  Google Scholar 

  5. Guo Y, Gan SS (2014) Translational researches on leaf senescence for enhancing plant productivity and quality. J Exp Bot 65:3901–3913

    Article  PubMed  Google Scholar 

  6. Leopold AC (1975) Aging, senescence, and turnover in plants. Bioscience 25:659–662

    Article  Google Scholar 

  7. Guiboileau A, Sormani R, Meyer C et al (2010) Senescence and death of plant organs: nutrient recycling and developmental regulation. C R Biol 333:382–391

    Article  CAS  PubMed  Google Scholar 

  8. Hensel LL, Grbic V, Baumgarten DA et al (1993) Developmental and age-related processes that influence the longevity and senescence of photosynthetic tissues in Arabidopsis. Plant Cell 5:553–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gregersen PL, Culetic A, Boschian L et al (2013) Plant senescence and crop productivity. Plant Mol Biol 82:603–622

    Article  CAS  PubMed  Google Scholar 

  10. Patterson TG, Brun WA (1980) Influence of sink removal in the senescence pattern of wheat. Crop Sci 20:19–23

    Article  CAS  Google Scholar 

  11. Crafts-Brandner SJ, Egli DB (1987) Sink removal and leaf senescence in soybean : cultivar effects. Plant Physiol 85:662–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Htwe NMPS, Yuasa T, Ishibashi Y et al (2011) Leaf senescence of soybean at reproductive stage is associated with induction of autophagy-related genes, GmATG8c, GmATG8i and GmATG4. Plant Prod Sci 14:141–147

    Article  CAS  Google Scholar 

  13. Kelly MO, Davies PJ (1986) Genetic and photoperiodic control of the relative rates of reproductive and vegetative development in peas. Ann Bot 58:13–21

    Article  Google Scholar 

  14. Borras L, Maddonni GA, Otegui ME (2003) Leaf senescence in maize hybrids: plant population, row spacing and kernel set effects. Field Crop Res 82:13–26

    Article  Google Scholar 

  15. Thomas H, Stoddart JL (1980) Leaf senescence. Annu Rev Plant Physiol 31:83–111

    Article  CAS  Google Scholar 

  16. Li W, Guo YF (2014) Transcriptome, transcription factors and transcriptional regulation of leaf senescence. J Bioinf Comp Genomics 1:1

    Google Scholar 

  17. Schippers JHM, Jing HC, Hille J et al. (2007) Developmental and hormonal control of leaf senescence. Senescence processes in plants, 145–170

    Google Scholar 

  18. Beaudoin N, Serizet C, Gosti F et al (2000) Interactions between abscisic acid and ethylene signaling cascades. Plant Cell 12:1103–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Van Styaden J, Cook E, Nooden LD (1988) Cytokinins and senescence. In: Noodén LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 281–328

    Google Scholar 

  20. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988

    Article  CAS  PubMed  Google Scholar 

  21. Nooden LD, Singh S, Letham DS (1990) Correlation of xylem sap cytokinin levels with monocarpic senescence in soybean. Plant Physiol 93:33–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gan SS, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone and play. Bioessays 18:557–565

    Article  CAS  Google Scholar 

  23. Hwang I, Sheen J, Muller B (2012) Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  PubMed  Google Scholar 

  24. Buchanan-Wollaston V, Page T, Harrison E et al (2005) Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J 42:567–585

    Article  CAS  PubMed  Google Scholar 

  25. Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  CAS  PubMed  Google Scholar 

  26. Kim HJ, Ryu H, Hong SH et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103:814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li Z, Su D, Lei B et al (2015) Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant. J Plant Physiol 176:1–15

    Article  CAS  PubMed  Google Scholar 

  28. Talla SK, Panigrahy M, Kappara S et al (2016) Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J Exp Bot 67:1839–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Trivellini A, Cocetta G, Vernieri P et al (2015) Effect of cytokinins on delaying petunia flower senescence: a transcriptome study approach. Plant Mol Biol 87:169–180

    Article  CAS  PubMed  Google Scholar 

  30. Brenner WG, Romanov GA, Köllmer I et al (2005) Immediate-early and delayed cytokinin response genes of Arabidopsis thaliana identified by genome-wide expression profiling reveal novel cytokinin-sensitive processes and suggest cytokinin action through transcriptional cascades. Plant J 44:314–333

    Article  CAS  PubMed  Google Scholar 

  31. Sacher JA (1957) Relationship between auxin and membrane-integrity in tissue senescence and abscission. Science 125:1199–1200

    Article  CAS  PubMed  Google Scholar 

  32. Nooden LD, Kahanak GM, Okatan Y (1979) Prevention of monocarpic senescence in soybeans with auxin and cytokinin: an antidote for self-destruction. Science 206:841–843

    Article  CAS  PubMed  Google Scholar 

  33. Noh YS, Amasino RM (1999) Identification of a promoter region responsible for the senescence-specific expression of SAG12. Plant Mol Biol 41:181–194

    Article  CAS  PubMed  Google Scholar 

  34. Quirino BF, Normanly J, Amasino RM (1999) Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen-independent induction of defense-related genes. Plant Mol Biol 40:267–278

    Article  CAS  PubMed  Google Scholar 

  35. Dela Fuente RK, Leopold AC (1968) Lateral movement of auxin in phototropism. Plant Physiol 43:1031–1036

    Article  Google Scholar 

  36. Kim JI, Murphy AS, Baek D et al (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. J Exp Bot 62:3981–3992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lim PO, Lee IC, Kim J et al (2010) Auxin response factor 2 (ARF2) plays a major role in regulating auxin-mediated leaf longevity. J Exp Bot 61:1419–1430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ellis CM, Nagpal P, Young JC et al (2005) AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132:4563–4574

    Article  CAS  PubMed  Google Scholar 

  39. Lin M, Pang C, Fan S et al (2015) Global analysis of the Gossypium hirsutum L. Transcriptome during leaf senescence by RNA-Seq. BMC Plant Biol 15:43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rodrigues C, Vandenberghe LPD, De Oliveira J et al (2012) New perspectives of gibberellic acid production: a review. Crit Rev Biotechnol 32:263–273

    Article  CAS  PubMed  Google Scholar 

  41. Fletcher RA, Osborne DJ (1965) Regulation of protein and nucleic acid synthesis by gibberellin during leaf senescence. Nature 207:1176–1177

    Article  CAS  Google Scholar 

  42. Aharoni N, Richmond AE (1978) Endogenous gibberellin and abscisic acid content as related to senescence of detached lettuce leaves. Plant Physiol 62:224–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen L, Xiang S, Chen Y et al (2017) Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf senescence. Mol Plant 10:1174–1189. https://doi.org/10.1016/j.molp.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  44. Iqbal N, Khan NA, Ferrante A et al (2017) Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Front Plant Sci 8:475

    PubMed  PubMed Central  Google Scholar 

  45. Hunter DA, Yoo SD, Butcher SM et al (1999) Expression of 1-Aminocyclopropane-1-carboxylate oxidase during leaf ontogeny in white clover. Plant Physiol 120:131–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jing HC, Schippers JH, Hille J et al (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  CAS  PubMed  Google Scholar 

  47. Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    Article  CAS  Google Scholar 

  48. Wang H, Stier G, Lin J et al (2013) Transcriptome changes associated with delayed flower senescence on transgenic petunia by inducing expression of etr1-1, a mutant ethylene receptor. PLoS One 8:e65800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oh SA, Park JH, Lee GI et al (1997) Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana. Plant J 12:527–535

    Article  CAS  PubMed  Google Scholar 

  50. Li ZH, Peng JY, Wen X et al (2013) ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell 25:3311–3328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Qiu K, Li ZP, Yang Z et al (2015) EIN3 and ORE1 accelerate Degreening during ethylene-mediated leaf senescence by directly activating chlorophyll catabolic genes in Arabidopsis. PLoS Genet 11:e1005399

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kim JH, Chung KM, Woo HR (2011) Three positive regulators of leaf senescence in Arabidopsis, ORE1, ORE3 and ORE9, play roles in crosstalk among multiple hormone-mediated senescence pathways. Genes Genomics 33:373–381

    Article  CAS  Google Scholar 

  53. Ueda H, Kusaba M (2015) Strigolactone regulates leaf senescence in concert with ethylene in Arabidopsis. Plant Physiol 169:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang DP (2014) Abscisic acid metabolism, transport and signaling. Springer, Dordrecht

    Book  Google Scholar 

  55. He P, Osaki M, Takebe M et al (2005) Endogenous hormones and expression of senescence-related genes in different senescent types of maize. J Exp Bot 56:1117–1128

    Article  CAS  PubMed  Google Scholar 

  56. Gepstein S, Thimann KV (1980) Changes in the abscisic acid content of oat leaves during senescence. Proc Natl Acad Sci U S A 77:2050–2053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gao S, Gao J, Zhu X et al (2016) ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Mol Plant 9:1272–1285

    Article  CAS  PubMed  Google Scholar 

  58. Yang JC, Zhang JH, Wang ZQ et al (2002) Abscisic acid and cytokinins in the root exudates and leaves and their relationship to senescence and remobilization of carbon reserves in rice subjected to water stress during grain filling. Planta 215:645–652

    Article  CAS  PubMed  Google Scholar 

  59. Lee IC, Hong SW, Whang SS et al (2011) Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant Cell Physiol 52:651–662

    Article  CAS  PubMed  Google Scholar 

  60. Zhao Y, Chan Z, Gao J et al (2016) ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc Natl Acad Sci U S A 113:1949–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gudesblat GE, Russinova E (2011) Plants grow on brassinosteroids. Curr Opin Plant Biol 14:530–537

    Article  CAS  PubMed  Google Scholar 

  62. Gomes MDD, Netto AT, Campostrini E et al (2013) Brassinosteroid analogue affects the senescence in two papaya genotypes submitted to drought stress. Theor Exp Plant Physiol 25:186–195

    Google Scholar 

  63. He Y, Xu RJ, Zhao YJ (1996) Enhancement of senescence by epibrassinolide in leaves of mung bean seedling. Acta Phytophysiol Sin 22:58–62

    CAS  Google Scholar 

  64. Saglam-Cag S (2007) The effect of epibrassinolide on senescence in wheat leaves. Biotechnol Biotechnol Equip 21:63–65

    Article  CAS  Google Scholar 

  65. Chory J, Nagpal P, Peto CA (1991) Phenotypic and genetic analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu Y, Jiang Y, Han X et al (2017) Jasmonate regulates leaf senescence and tolerance to cold stress: crosstalk with other phytohormones. J Exp Bot 68:1361–1369

    Article  PubMed  Google Scholar 

  67. He Y, Fukushige H, Hildebrand DF et al (2002) Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence. Plant Physiol 128:876–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schommer C, Palatnik JF, Aggarwal P et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Qi TC, Wang JJ, Huang H et al (2015) Regulation of Jasmonate-induced leaf senescence by antagonism between bHLH subgroup IIIe and IIId factors in Arabidopsis. Plant Cell 27:1634–1649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang Y, Liang G, Yang S et al (2014) Arabidopsis WRKY57 functions as a node of convergence for jasmonic acid– and Auxin-mediated signaling in jasmonic acid–induced leaf senescence. Plant Cell 26:230–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yu J, Zhang Y, Di C et al (2016) JAZ7 negatively regulates dark-induced leaf senescence in Arabidopsis. J Exp Bot 67:751–762

    Article  CAS  PubMed  Google Scholar 

  72. Shan X, Wang J, Chua L et al (2011) The role of Arabidopsis Rubisco activase in jasmonate-induced leaf senescence. Plant Physiol 155:751–764

    Article  CAS  PubMed  Google Scholar 

  73. Vlot AC, Dempsey DMA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206

    Article  CAS  PubMed  Google Scholar 

  74. Abreu ME, Munne-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    Article  CAS  Google Scholar 

  75. Zhang K, Halitschke R, Yin C et al (2013) Salicylic acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating salicylic acid catabolism. Proc Natl Acad Sci 110:14807–14812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Morris K, Mackerness SaH, Page T et al (2000) Salicylic acid has a role in regulating gene expression during leaf senescence. Plant J 23:677–685

    Article  CAS  PubMed  Google Scholar 

  77. Zhao X-Y, Wang J-G, Song S-J et al (2016) Precocious leaf senescence by functional loss of PROTEIN S-ACYL TRANSFERASE14 involves the NPR1-dependent salicylic acid signaling. Sci Rep 6:20309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yamada Y, Umehara M (2015) Possible roles of strigolactones during leaf senescence. Plants 4:664–677

    Article  PubMed  PubMed Central  Google Scholar 

  79. Woo HR, Chung KM, Park JH et al (2001) ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13:1779–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Stirnberg P, Van De Sande K, Leyser HMO (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    CAS  PubMed  Google Scholar 

  81. Yan H, Saika H, Maekawa M et al (2007) Rice tillering dwarf mutant dwarf3 has increased leaf longevity during darkness-induced senescence or hydrogen peroxide-induced cell death. Genes Genet Syst 82:361–366

    Article  CAS  PubMed  Google Scholar 

  82. Snowden KC, Simkin AJ, Janssen BJ et al (2005) The decreased apical dominance1/Petunia hybrida CAROTENOID CLEAVAGE DIOXYGENASE8 gene affects branch production and plays a role in leaf senescence, root growth, and flower development. Plant Cell 17:746–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu J, Novero M, Charnikhova T et al (2013) CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus. J Exp Bot 64:1967–1981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yamada Y, Furusawa S, Nagasaka S et al (2014) Strigolactone signaling regulates rice leaf senescence in response to a phosphate deficiency. Planta 240:399–408

    Article  CAS  PubMed  Google Scholar 

  85. Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stress-induced plant senescence. Plant Mol Biol 82:623–633

    Article  CAS  PubMed  Google Scholar 

  86. Allu AD, Soja AM, Wu A et al (2014) Salt stress and senescence: identification of cross-talk regulatory components. J Exp Bot 65:3993–4008

    Article  PubMed  PubMed Central  Google Scholar 

  87. Chen H-J, Lin Z-W, Huang G-J et al (2012) Sweet potato calmodulin SPCAM is involved in salt stress-mediated leaf senescence, H2O2 elevation and senescence-associated gene expression. J Plant Physiol 169:1892–1902

    Article  CAS  PubMed  Google Scholar 

  88. Xiao H-J, Liu K-K, Li D-W et al (2015) Cloning and characterization of the pepper CaPAO gene for defense responses to salt-induced leaf senescence. BMC Biotechnol 15:100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Khanna-Chopra R, Selote DS (2007) Acclimation to drought stress generates oxidative stress tolerance in drought-resistant than -susceptible wheat cultivar under field conditions. Environ Exp Bot 60:276–283

    Article  CAS  Google Scholar 

  90. Chen D, Wang S, Xiong B et al (2015) Carbon/nitrogen imbalance associated with drought-induced leaf senescence in Sorghum bicolor. PLoS One 10:e0137026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Janack B, Sosoi P, Krupinska K et al (2016) Knockdown of WHIRLY1 affects drought stress-induced leaf senescence and histone modifications of the senescence-associated gene HvS40. Plants 5:37

    Article  PubMed Central  Google Scholar 

  92. Liu T, Longhurst AD, Talavera-Rauh F et al (2016) The Arabidopsis transcription factor ABIG1 relays ABA signaled growth inhibition and drought induced senescence. Elife 5:e13768

    PubMed  PubMed Central  Google Scholar 

  93. Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273

    Article  PubMed  PubMed Central  Google Scholar 

  94. Jespersen D, Zhang J, Huang B (2016) Chlorophyll loss associated with heat-induced senescence in bentgrass. Plant Sci 249:1–12

    Article  CAS  PubMed  Google Scholar 

  95. Jespersen D, Yu J, Huang B (2015) Metabolite responses to exogenous application of nitrogen, cytokinin, and ethylene inhibitors in relation to heat-induced senescence in creeping bentgrass. PLoS One 10:e0123744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Chen WQ, Provart NJ, Glazebrook J et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Guo Y, Gan SS (2012) Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments. Plant Cell Environ 35:644–655

    Article  CAS  PubMed  Google Scholar 

  98. He Y, Tang W, Swain JD et al (2001) Networking senescence-regulating pathways by using Arabidopsis enhancer trap lines. Plant Physiol 126:707–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guo Y (2013) Towards systems biological understanding of leaf senescence. Plant Mol Biol 82:519–528

    Article  CAS  PubMed  Google Scholar 

  100. Zentgraf U, Jobst J, Kolb D et al (2004) Senescence-related gene expression profiles of rosette leaves of Arabidopsis thaliana: leaf age versus plant age. Plant Biol (Stuttg) 6:178–183

    Article  CAS  Google Scholar 

  101. Breeze E, Harrison E, Mchattie S et al (2011) High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell 23:873–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Woo HR, Koo HJ, Kim J et al (2016) Programming of plant leaf senescence with temporal and inter-organellar coordination of transcriptome in Arabidopsis. Plant Physiol 171:452–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Guo Y, Cai Z, Gan S (2004) Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ 27:521–549

    Article  CAS  Google Scholar 

  104. Christiansen MW, Gregersen PL (2014) Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves. J Exp Bot 65:4009–4022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  CAS  PubMed  Google Scholar 

  106. Zhang K, Xia X, Zhang Y et al (2012) An ABA-regulated and Golgi-localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant J 69:667–678

    Article  CAS  PubMed  Google Scholar 

  107. Zhang K, Gan SS (2012) An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol 158:961–969

    Article  CAS  PubMed  Google Scholar 

  108. Liang C, Wang Y, Zhu Y et al (2014) OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A 111:10013–10018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kim JH, Woo HR, Kim J et al (2009) Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis. Science 323:1053–1057

    Article  CAS  PubMed  Google Scholar 

  110. Kim HJ, Hong SH, Kim YW et al (2014) Gene regulatory cascade of senescence-associated NAC transcription factors activated by ETHYLENE-INSENSITIVE2-mediated leaf senescence signalling in Arabidopsis. J Exp Bot 65:4023–4036

    Article  PubMed  PubMed Central  Google Scholar 

  111. Rushton DL, Tripathi P, Rabara RC et al (2012) WRKY transcription factors: key components in abscisic acid signalling. Plant Biotechnol J 10:2–11

    Article  CAS  PubMed  Google Scholar 

  112. Miao Y, Laun T, Zimmermann P et al (2004) Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Mol Biol 55:853–867

    Article  CAS  PubMed  Google Scholar 

  113. Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  CAS  PubMed  Google Scholar 

  114. Solomos T (1988) Respiration in senescing plant organs: its nature, regulation, and physiological significance. In: Nooden LD, Leopold AC (eds) Senescence and aging in plants. Academic Press, San Diego, pp 111–145

    Google Scholar 

  115. Thomas H, Ougham H, Hortensteiner S (2001) Recent advances in the cell biology of chlorophyll catabolism. Adv Bot Res 35:1–52

    Article  CAS  Google Scholar 

  116. Matile P (1992) Chloroplast senescence. In: Baker NR, Thomas H (eds) Crop photosynthesis:spatial and temporal determinants. Elsevier, Amsterdam, pp 413–440

    Chapter  Google Scholar 

  117. Hörtensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  Google Scholar 

  118. Hörtensteiner S, Kräutler B (2011) Chlorophyll breakdown in higher plants. Biochim Biophys Acta 1807:977–988

    Article  PubMed  CAS  Google Scholar 

  119. Ren G, An K, Liao Y et al (2007) Identification of a novel chloroplast protein AtNYE1 regulating chlorophyll degradation during leaf senescence in Arabidopsis. Plant Physiol 144:1429–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wu S, Li Z, Yang L et al (2016) NON-YELLOWING2 (NYE2), a close paralog of NYE1, plays a positive role in chlorophyll degradation in Arabidopsis. Mol Plant 9:624–627

    Article  CAS  PubMed  Google Scholar 

  121. Rong H, Tang Y, Zhang H et al (2013) The stay-green rice like (SGRL) gene regulates chlorophyll degradation in rice. J Plant Physiol 170:1367–1373

    Article  CAS  PubMed  Google Scholar 

  122. Jiao BB, Wang JJ, Zhu XD et al (2012) A novel protein RLS1 with NB-ARM domains is involved in chloroplast degradation during leaf senescence in rice. Mol Plant 5:205–217

    Article  CAS  PubMed  Google Scholar 

  123. Thompson JE, Froese CD, Madey E et al (1998) Lipid metabolism during plant senescence. Prog Lipid Res 37:119–141

    Article  CAS  PubMed  Google Scholar 

  124. Watanabe M, Balazadeh S, Tohge T et al (2013) Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol 162:1290–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kaup MT, Froese CD, Thompson JE (2002) A role for diacylglycerol acyltransferase during leaf senescence. Plant Physiol 129:1616–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Fan L, Zheng S, Wang X (1997) Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell 9:2183–2196

    CAS  PubMed  PubMed Central  Google Scholar 

  127. He Y, Gan S (2002) A gene encoding an acyl hydrolase is involved in leaf senescence in Arabidopsis. Plant Cell 14:805–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME et al (2016) Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 39:329–338

    Article  PubMed  PubMed Central  Google Scholar 

  129. Roberts IN, Caputo C, Criado MV et al (2012) Senescence-associated proteases in plants. Physiol Plant 145:130–139

    Article  CAS  PubMed  Google Scholar 

  130. Liu J, Wu YH, Yang JJ et al (2008) Protein degradation and nitrogen remobilization during leaf senescence. J Plant Biol 51:11–19

    Article  CAS  Google Scholar 

  131. Zelisko A, Garcia-Lorenzo M, Jackowski G et al (2005) AtFtsH6 is involved in the degradation of the light-harvesting complex II during high-light acclimation and senescence. Proc Natl Acad Sci U S A 102:13699–13704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Martínez DE, Costa ML, Guiamet JJ (2008) Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Biol 10:15–22

    Article  PubMed  CAS  Google Scholar 

  133. Martinez DE, Costa ML, Gomez FM et al (2008) ‘Senescence-associated vacuoles’ are involved in the degradation of chloroplast proteins in tobacco leaves. Plant J 56:196–206

    Article  CAS  PubMed  Google Scholar 

  134. Buchanan-Wollaston V, Earl S, Harrison E et al (2003) The molecular analysis of leaf senescence - a genomics approach. Plant Biotechnol J 1:3–22

    Article  CAS  PubMed  Google Scholar 

  135. Avila-Ospina L, Moison M, Yoshimoto K et al (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65:3799–3811

    Article  PubMed  Google Scholar 

  136. Ono Y, Wada S, Izumi M et al (2013) Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana. Plant Cell Environ 36:1147–1159

    Article  CAS  PubMed  Google Scholar 

  137. Xiong Y, Contento AL, Bassham DC (2005) AtATG18a is required for the formation of autophagosomes during nutrient stress and senescence in Arabidopsis thaliana. Plant J 42:535–546

    Article  CAS  PubMed  Google Scholar 

  138. Wada S, Ishida H, Izumi M et al (2009) Autophagy plays a role in chloroplast degradation during senescence in individually darkened leaves. Plant Physiol 149:885–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ishida H, Yoshimoto K, Izumi M et al (2008) Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148:142–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Masclaux C, Valadier M-H, Brugière N et al (2000) Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence. Planta 211:510–518

    Article  CAS  PubMed  Google Scholar 

  141. Gregersen PL, Holm PB, Krupinska K (2008) Leaf senescence and nutrient remobilisation in barley and wheat. Plant Biol 10:37–49

    Article  CAS  PubMed  Google Scholar 

  142. Guiboileau A, Yoshimoto K, Soulay F et al (2012) Autophagy machinery controls nitrogen remobilization at the whole-plant level under both limiting and ample nitrate conditions in Arabidopsis. New Phytol 194:732–740

    Article  CAS  PubMed  Google Scholar 

  143. Moschen S, Bengoa Luoni S, Di Rienzo JA et al (2016) Integrating transcriptomic and metabolomic analysis to understand natural leaf senescence in sunflower. Plant Biotechnol J 14:719–734

    Article  CAS  PubMed  Google Scholar 

  144. Cowan AK, Freeman M, Björkman P-O et al (2005) Effects of senescence-induced alteration in cytokinin metabolism on source-sink relationships and ontogenic and stress-induced transitions in tobacco. Planta 221:801–814

    Article  CAS  PubMed  Google Scholar 

  145. Cao ML, Zhou Z, Wang Z (2001) Performance of autoregulatory senescence delayed system in tobacco. Crop Res:26–28

    Google Scholar 

  146. Lin YJ, Cao ML, Xu CG et al (2002) Cultivating rice with delaying led-senescence by P-SAG12-IPT gene transfonination. Acta Bot Sin 44:1333–1338

    CAS  Google Scholar 

  147. Swartzberg D, Dai N, Gan S et al (2006) Effects of cytokinin production under two SAG promoters on senescence and development of tomato plants. Plant Biol (Stuttg) 8:579–586

    Article  CAS  Google Scholar 

  148. Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci U S A 104:19631–19636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Liu L, Zhou Y, Szczerba MW et al (2010) Identification and application of a rice senescence-associated promoter. Plant Physiol 153:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Qin H, Gu Q, Zhang J et al (2011) Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions. Plant Cell Physiol 52:1904–1914

    Article  CAS  PubMed  Google Scholar 

  151. Liu YD, Yin ZJ, Yu JW et al (2012) Improved salt tolerance and delayed leaf senescence in transgenic cotton expressing the Agrobacterium IPT gene. Biol Plant 56:237–246

    Article  CAS  Google Scholar 

  152. Merewitz EB, Gianfagna T, Huang B (2011) Photosynthesis, water use, and root viability under water stress as affected by expression of SAG12-ipt controlling cytokinin synthesis in Agrostis stolonifera. J Exp Bot 62:383–395

    Article  CAS  PubMed  Google Scholar 

  153. Gan SS (2014) Leaf senescence as an important target for improving crop production. Adv Crop Sci Technol 2:e116

    Article  Google Scholar 

  154. Chen Y, Qiu K, Kuai B et al (2011) Identification of an NAP-like transcription factor BeNAC1 regulating leaf senescence in bamboo (Bambusa emeiensis ‘Viridiflavus’). Physiol Plant 142:361–371

    Article  CAS  PubMed  Google Scholar 

  155. Fan K, Bibi N, Gan S et al (2015) A novel NAP member GhNAP is involved in leaf senescence in Gossypium hirsutum. J Exp Bot 66:4669–4682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang Y, Cao Y, Shao Q et al (2012) Regulating effect of ZmNAP gene on anti-senescence and yield traits of maize. J Henan Agric Sci 41:19–24

    Google Scholar 

  157. Duguay J, Jamal S, Liu Z et al (2007) Leaf-specific suppression of deoxyhypusine synthase in Arabidopsis thaliana enhances growth without negative pleiotropic effects. J Plant Physiol 164:408–420

    Article  CAS  PubMed  Google Scholar 

  158. Wang T-W, Lu L, Zhang C-G et al (2003) Pleiotropic effects of suppressing deoxyhypusine synthase expression in Arabidopsis thaliana. Plant Mol Biol 52:1223–1235

    Article  CAS  PubMed  Google Scholar 

  159. Thompson JE, Hopkins MT, Taylor C et al (2004) Regulation of senescence by eukaryotic translation initiation factor 5A: implications for plant growth and development. Trends Plant Sci 9:174–179

    Article  CAS  PubMed  Google Scholar 

  160. Hopkins M, Taylor C, Liu Z et al (2007) Regulation and execution of molecular disassembly and catabolism during senescence. New Phytol 175:201–214

    Article  CAS  PubMed  Google Scholar 

  161. Wang TW, Zhang CG, Wu W et al (2005) Antisense suppression of deoxyhypusine synthase in tomato delays fruit softening and alters growth and development. Plant Physiol 138:1372–1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Wang L, Xu C, Wang C et al (2012) Characterization of a eukaryotic translation initiation factor 5A homolog from Tamarix androssowii involved in plant abiotic stress tolerance. BMC Plant Biol 12:118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research in the Guo Lab has been supported by the Fundamental Research Funds for Central Non-profit Scientific Institution (2013ZL024, Y2017JC27), the National Natural Science Foundation of China (31571494), and the Agricultural Science and Technology Innovation Program (ASTIP-TRIC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfeng Guo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ali, A., Gao, X., Guo, Y. (2018). Initiation, Progression, and Genetic Manipulation of Leaf Senescence. In: Guo, Y. (eds) Plant Senescence. Methods in Molecular Biology, vol 1744. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7672-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7672-0_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7670-6

  • Online ISBN: 978-1-4939-7672-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics