Skip to main content

Morphometry and Development: Changes in Brain Structure from Birth to Adult Age

  • Protocol
  • First Online:
Brain Morphometry

Part of the book series: Neuromethods ((NM,volume 136))

Abstract

This chapter gives an overview of the field of brain morphometry and development from birth to adult age, including selected methodological considerations and fields of application. Brain development is an area of research where morphometry studies have greatly increased our knowledge, revealing organized patterns where regional differences in cortical, subcortical, and white matter structural maturation play a role for cognitive development. Studies show that early rapid increases in gray matter structures are generally followed by decreases, whereas white matter continues to increase throughout childhood and adolescence. The chapter also highlights the importance of developmental perspectives in structural neuroimaging studies for our understanding of clinical conditions such as schizophrenia, autism spectrum disorders, and epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mills KL, Tamnes CK (2014) Methods and considerations for longitudinal structural brain imaging analysis across development. Dev Cogn Neurosci 9:172–190

    Article  PubMed  Google Scholar 

  2. Hedman AM, van Haren NE, Schnack HG, Kahn RS, Hulshoff Pol HE (2012) Human brain changes across the life span: a review of 56 longitudinal magnetic resonance imaging studies. Hum Brain Mapp 33:1987–2002

    Article  PubMed  Google Scholar 

  3. Giedd JN, Raznahan A, Alexander-Bloch A, Schmitt E, Gogtay N, Rapoport JL (2015) Child psychiatry branch of the National Institute of Mental Health longitudinal structural magnetic resonance imaging study of human brain development. Neuropsychopharmacology 40:43–49

    Article  PubMed  Google Scholar 

  4. Blakemore SJ, Mills KL (2014) Is adolescence a sensitive period for sociocultural processing? Annu Rev Psychol 65:187–207

    Article  PubMed  Google Scholar 

  5. Crone EA, Dahl RE (2012) Understanding adolescence as a period of social-affective engagement and goal flexibility. Nat Rev Neurosci 13:636–650

    Article  CAS  PubMed  Google Scholar 

  6. Walhovd KB, Tamnes CK, Fjell AM (2014) Brain structural maturation and the foundations of cognitive behavioral development. Curr Opin Neurol 27:176–184

    Article  PubMed  Google Scholar 

  7. Blakemore SJ, Burnett S, Dahl RE (2010) The role of puberty in the developing adolescent brain. Hum Brain Mapp 31:926–933

    Article  PubMed  PubMed Central  Google Scholar 

  8. Peper JS, Dahl RE (2013) Surging hormones: brain-behavior interactions during puberty. Curr Dir Psychol Sci 22:134–139

    Article  PubMed  PubMed Central  Google Scholar 

  9. Paus T, Keshavan M, Giedd JN (2008) Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci 9:947–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Keshavan MS, Giedd J, Lau JY, Lewis DA, Paus T (2014) Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry 1:549–558

    Article  PubMed  Google Scholar 

  11. Sled JG, Nossin-Manor R (2013) Quantitative MRI for studying neonatal brain development. Neuroradiology 55(Suppl 2):97–104

    Article  PubMed  Google Scholar 

  12. Ducharme S, Albaugh MD, Nguyen TV, Hudziak JJ, Mateos-Perez JM, Labbe A, Evans AC, Karama S, Brain Development Cooperative Group (2016) Trajectories of cortical thickness maturation in normal brain development - the importance of quality control procedures. NeuroImage 125:267–279

    Article  PubMed  Google Scholar 

  13. Yendiki A, Koldewyn K, Kakunoori S, Kanwisher N, Fischl B (2013) Spurious group differences due to head motion in a diffusion MRI study. NeuroImage 88C:79–90

    Google Scholar 

  14. Brown TT, Kuperman JM, Erhart M, White NS, Roddey JC, Shankaranarayanan A, Han ET, Rettmann D, Dale AM (2010) Prospective motion correction of high-resolution magnetic resonance imaging data in children. NeuroImage 53:139–145

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fjell AM, Walhovd KB, Westlye LT, Østby Y, Tamnes CK, Jernigan TL, Gamst A, Dale AM (2010) When does brain aging accelerate? Dangers of quadratic fits in cross-sectional studies. NeuroImage 50:1376–1383

    Article  PubMed  Google Scholar 

  16. Mills KL, Goddings AL, Herting MM, Meuwese R, Blakemore SJ, Crone EA, Dahl RE, Guroglu B, Raznahan A, Sowell ER, Tamnes CK (2016) Structural brain development between childhood and adulthood: convergence across four longitudinal samples. NeuroImage 141:273–281

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holland D, Chang L, Ernst TM, Curran M, Buchthal SD, Alicata D, Skranes J, Johansen H, Hernandez A, Yamakawa R, Kuperman JM, Dale AM (2014) Structural growth trajectories and rates of change in the first 3 months of infant brain development. JAMA Neurol 71:1266–1274

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gilmore JH, Shi F, Woolson SL, Knickmeyer RC, Short SJ, Lin W, Zhu H, Hamer RM, Styner M, Shen D (2012) Longitudinal development of cortical and subcortical gray matter from birth to 2 years. Cereb Cortex 22:2478–2485

    Article  PubMed  Google Scholar 

  19. Fjell AM, Walhovd KB, Fennema-Notestine C, McEvoy LK, Hagler DJ, Holland D, Brewer JB, Dale AM (2009) One-year brain atrophy evident in healthy aging. J Neurosci 29:15223–15231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Miller DJ, Duka T, Stimpson CD, Schapiro SJ, Baze WB, McArthur MJ, Fobbs AJ, Sousa AM, Sestan N, Wildman DE, Lipovich L, Kuzawa CW, Hof PR, Sherwood CC (2012) Prolonged myelination in human neocortical evolution. Proc Natl Acad Sci U S A 109:16480–16485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lebel C, Beaulieu C (2011) Longitudinal development of human brain wiring continues from childhood into adulthood. J Neurosci 31:10937–10947

    Article  CAS  PubMed  Google Scholar 

  22. Benes FM (1989) Myelination of cortical-hippocampal relays during late adolescence. Schizophr Bull 15:585–593

    Article  CAS  PubMed  Google Scholar 

  23. Benes FM, Turtle M, Khan Y, Farol P (1994) Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 51:477–484

    Article  CAS  PubMed  Google Scholar 

  24. Yakovlev PA, Lecours IR (1967) The myelogenetic cycles of regional maturation of the brain. In: Minkowski A (ed) Regional development of the brain in early life. Blackwell, Oxford

    Google Scholar 

  25. Bourgeois JP, Rakic P (1993) Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. J Neurosci 13:2801–2820

    CAS  PubMed  Google Scholar 

  26. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387:167–178

    Article  CAS  PubMed  Google Scholar 

  27. Petanjek Z, Judas M, Simic G, Rasin MR, Uylings HB, Rakic P, Kostovic I (2011) Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proc Natl Acad Sci U S A 108:13281–13286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aleman-Gomez Y, Janssen J, Schnack H, Balaban E, Pina-Camacho L, Alfaro-Almagro F, Castro-Fornieles J, Otero S, Baeza I, Moreno D, Bargallo N, Parellada M, Arango C, Desco M (2013) The human cerebral cortex flattens during adolescence. J Neurosci 33:15004–15010

    Article  CAS  PubMed  Google Scholar 

  29. Mutlu AK, Schneider M, Debbane M, Badoud D, Eliez S, Schaer M (2013) Sex differences in thickness, and folding developments throughout the cortex. NeuroImage 82:200–207

    Article  PubMed  Google Scholar 

  30. Geschwind DH, Rakic P (2013) Cortical evolution: judge the brain by its cover. Neuron 80:633–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kremen WS, Fennema-Notestine C, Eyler LT, Panizzon MS, Chen CH, Franz CE, Lyons MJ, Thompson WK, Dale AM (2013) Genetics of brain structure: contributions from the Vietnam era twin study of aging. Am J Med Genet B Neuropsychiatr Genet 162B:751–761

    Article  PubMed  CAS  Google Scholar 

  32. Chenn A, Walsh CA (2002) Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science 297:365–569

    Article  CAS  PubMed  Google Scholar 

  33. Lyall AE, Shi F, Geng X, Woolson S, Li G, Wang L, Hamer RM, Shen D, Gilmore JH (2015) Dynamic development of regional cortical thickness and surface area in early childhood. Cereb Cortex 25:2204–2212

    Article  PubMed  Google Scholar 

  34. Tamnes CK, Herting MM, Goddings AL, Meuwese R, Blakemore SJ, Dahl RE, Güroğlu B, Raznahan A, Sowell ER, Crone EA, Mills KL (2017) Development of the cerebral cortex across adolescence: a multisample study of interrelated longitudinal changes in cortical volume, surface area and thickness. J Neurosci 37(12):3402–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wierenga LM, Langen M, Oranje B, Durston S (2014) Unique developmental trajectories of cortical thickness and surface area. NeuroImage 87:120–126

    Article  PubMed  Google Scholar 

  36. Fjell AM, Grydeland H, Krogsrud SK, Amlien I, Rohani DA, Ferschmann L, Storsve AB, Tamnes CK, Sala-Llonch R, Due-Tønnessen P, Bjornerud A, Sølsnes AE, Håberg AK, Skranes J, Bartsch H, Chen CH, Thompson WK, Panizzon MS, Kremen WS, Dale AM, Walhovd KB (2015) Development and aging of cortical thickness correspond to genetic organization patterns. Proc Natl Acad Sci U S A 112:15462–15467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Vijayakumar N, Allen NB, Youssef G, Dennison M, Yucel M, Simmons JG, Whittle S (2016) Brain development during adolescence: a mixed-longitudinal investigation of cortical thickness, surface area, and volume. Hum Brain Mapp 37:2027–2038

    Article  PubMed  Google Scholar 

  38. Storsve AB, Fjell AM, Tamnes CK, Westlye LT, Øverbye K, Aasland HW, Walhovd KB (2014) Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. J Neurosci 34:8488–8498

    Article  CAS  PubMed  Google Scholar 

  39. Tamnes CK, Walhovd KB, Dale AM, Østby Y, Grydeland H, Richardson G, Westlye LT, Roddey JC, Hagler DJ Jr, Due-Tønnessen P, Holland D, Fjell AM, Alzheimer's Disease Neuroimaging Initiative (2013) Brain development and aging: overlapping and unique patterns of change. NeuroImage 68:63–74

    Article  PubMed  Google Scholar 

  40. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, Nugent TF 3rd, Herman DH, Clasen LS, Toga AW, Rapoport JL, Thompson PM (2004) Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci U S A 101:8174–8179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Westlye LT, Walhovd KB, Dale AM, Bjørnerud A, Due-Tønnessen P, Engvig A, Grydeland H, Tamnes CK, Østby Y, Fjell AM (2010) Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex 20:2055–2068

    Article  PubMed  Google Scholar 

  42. Østby Y, Tamnes CK, Fjell AM, Westlye LT, Due-Tønnessen P, Walhovd KB (2009) Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. J Neurosci 29:11772–11782

    Article  PubMed  CAS  Google Scholar 

  43. Swagerman SC, Brouwer RM, de Geus EJ, Hulshoff Pol HE, Boomsma DI (2014) Development and heritability of subcortical brain volumes at ages 9 and 12. Genes Brain Behav 13:733–742

    Article  CAS  PubMed  Google Scholar 

  44. Goddings AL, Mills KL, Clasen LS, Giedd JN, Viner RM, Blakemore SJ (2014) The influence of puberty on subcortical brain development. NeuroImage 88:242–251

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dennison M, Whittle S, Yucel M, Vijayakumar N, Kline A, Simmons J, Allen NB (2013) Mapping subcortical brain maturation during adolescence: evidence of hemisphere- and sex-specific longitudinal changes. Dev Sci 16:772–791

    Article  PubMed  Google Scholar 

  46. Raznahan A, Lerch JP, Lee N, Greenstein D, Wallace GL, Stockman M, Clasen L, Shaw PW, Giedd JN (2011) Patterns of coordinated anatomical change in human cortical development: a longitudinal neuroimaging study of maturational coupling. Neuron 72:873–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Walhovd KB, Tamnes CK, Bjørnerud A, Due-Tønnessen P, Holland D, Dale AM, Fjell AM (2015) Maturation of cortico-subcortical structural networks - segregation and overlap of medial temporal and fronto-striatal systems in development. Cereb Cortex 25:1835–1841

    Article  PubMed  Google Scholar 

  48. Shaw P, Kabani NJ, Lerch JP, Eckstrand K, Lenroot R, Gogtay N, Greenstein D, Clasen L, Evans A, Rapoport JL, Giedd JN, Wise SP (2008) Neurodevelopmental trajectories of the human cerebral cortex. J Neurosci 28:3586–3594

    Article  CAS  PubMed  Google Scholar 

  49. Vandekar SN, Shinohara RT, Raznahan A, Roalf DR, Ross M, DeLeo N, Ruparel K, Verma R, Wolf DH, Gur RC, Gur RE, Satterthwaite TD (2015) Topologically dissociable patterns of development of the human cerebral cortex. J Neurosci 35:599–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Amlien IK, Fjell AM, Tamnes CK, Grydeland H, Krogsrud SK, Chaplin TA, Rosa MG, Walhovd KB (2016) Organizing principles of human cortical development - thickness and area from 4 to 30 years: insights from comparative primate neuroanatomy. Cereb Cortex 26:257–267

    Article  PubMed  Google Scholar 

  51. Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D (2010) Similar patterns of cortical expansion during human development and evolution. Proc Natl Acad Sci U S A 107:13135–13140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Fjell AM, Westlye LT, Amlien I, Tamnes CK, Grydeland H, Engvig A, Espeseth T, Reinvang I, Lundervold AJ, Lundervold A, Walhovd KB (2015) High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cereb Cortex 25:26–34

    Article  PubMed  Google Scholar 

  53. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alexander-Bloch A, Raznahan A, Bullmore E, Giedd J (2013) The convergence of maturational change and structural covariance in human cortical networks. J Neurosci 33:2889–2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krongold M, Cooper C, Bray S (2017) Modular development of cortical gray matter across childhood and adolescence. Cereb Cortex 27(2):1125–1136

    PubMed  Google Scholar 

  56. Lindenberger U (2014) Human cognitive aging: corriger la fortune? Science 346:572–578

    Article  CAS  PubMed  Google Scholar 

  57. Douaud G, Groves AR, Tamnes CK, Westlye LT, Duff EP, Engvig A, Walhovd KB, James A, Gass A, Monsch AU, Matthews PM, Fjell AM, Smith SM, Johansen-Berg H (2014) A common brain network links development, aging, and vulnerability to disease. Proc Natl Acad Sci U S A 111:17648–17653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sameroff A (2010) A unified theory of development: a dialectic integration of nature and nurture. Child Dev 81:6–22

    Article  PubMed  Google Scholar 

  59. van Soelen IL, Brouwer RM, van Baal GC, Schnack HG, Peper JS, Collins DL, Evans AC, Kahn RS, Boomsma DI, Hulshoff Pol HE (2012) Genetic influences on thinning of the cerebral cortex during development. NeuroImage 59:3871–3880

    Article  PubMed  Google Scholar 

  60. Knickmeyer RC, Wang J, Zhu H, Geng X, Woolson S, Hamer RM, Konneker T, Lin W, Styner M, Gilmore JH (2014) Common variants in psychiatric risk genes predict brain structure at birth. Cereb Cortex 24:1230–1246

    Article  PubMed  Google Scholar 

  61. Isaacs EB (2013) Neuroimaging, a new tool for investigating the effects of early diet on cognitive and brain development. Front Hum Neurosci 7:445

    Article  PubMed  PubMed Central  Google Scholar 

  62. Derauf C, Kekatpure M, Neyzi N, Lester B, Kosofsky B (2009) Neuroimaging of children following prenatal drug exposure. Semin Cell Dev Biol 20:441–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Roussotte F, Soderberg L, Sowell E (2010) Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: evidence from neuroimaging. Neuropsychol Rev 20:376–397

    Article  PubMed  PubMed Central  Google Scholar 

  64. Sandman CA, Buss C, Head K, Davis EP (2015) Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biol Psychiatry 77:324–334

    Article  PubMed  Google Scholar 

  65. Glover V (2014) Maternal depression, anxiety and stress during pregnancy and child outcome; what needs to be done. Best Pract Res Clin Obstet Gynaecol 28:25–35

    Article  PubMed  Google Scholar 

  66. Walhovd KB, Fjell AM, Brown TT, Kuperman JM, Chung Y, Hagler DJ Jr, Roddey JC, Erhart M, McCabe C, Akshoomoff N, Amaral DG, Bloss CS, Libiger O, Schork NJ, Darst BF, Casey BJ, Chang L, Ernst TM, Frazier J, Gruen JR, Kaufmann WE, Murray SS, van Zijl P, Mostofsky S, Dale AM, Pediatric Imaging Neurocognition Genetics Study (2012) Long-term influence of normal variation in neonatal characteristics on human brain development. Proc Natl Acad Sci U S A 109:20089–20094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raznahan A, Greenstein D, Lee NR, Clasen LS, Giedd JN (2012) Prenatal growth in humans and postnatal brain maturation into late adolescence. Proc Natl Acad Sci U S A 109:11366–11371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  CAS  Google Scholar 

  69. Zatorre RJ, Fields RD, Johansen-Berg H (2012) Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nat Neurosci 15:528–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jolles DD, Crone EA (2012) Training the developing brain: a neurocognitive perspective. Front Hum Neurosci 6:76

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lim L, Radua J, Rubia K (2014) Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry 171:854–863

    Article  PubMed  Google Scholar 

  72. McCrory E, De Brito SA, Viding E (2011) The impact of childhood maltreatment: a review of neurobiological and genetic factors. Front Psych 2:48

    Google Scholar 

  73. Hodel AS, Hunt RH, Cowell RA, Van Den Heuvel SE, Gunnar MR, Thomas KM (2015) Duration of early adversity and structural brain development in post-institutionalized adolescents. NeuroImage 105:112–119

    Article  PubMed  Google Scholar 

  74. Brent BK, Thermenos HW, Keshavan MS, Seidman LJ (2013) Gray matter alterations in schizophrenia high-risk youth and early-onset schizophrenia: a review of structural MRI findings. Child Adolesc Psychiatr Clin N Am 22:689–714

    Article  PubMed  PubMed Central  Google Scholar 

  75. Janssen J, Aleman-Gomez Y, Schnack H, Balaban E, Pina-Camacho L, Alfaro-Almagro F, Castro-Fornieles J, Otero S, Baeza I, Moreno D, Bargallo N, Parellada M, Arango C, Desco M (2014) Cortical morphology of adolescents with bipolar disorder and with schizophrenia. Schizophr Res 158:91–99

    Article  PubMed  Google Scholar 

  76. Fraguas D, Diaz-Caneja CM, Pina-Camacho L, Janssen J, Arango C (2016) Progressive brain changes in children and adolescents with early-onset psychosis: a meta-analysis of longitudinal MRI studies. Schizophr Res 173:132–139

    Article  PubMed  Google Scholar 

  77. Thormodsen R, Rimol LM, Tamnes CK, Juuhl-Langseth M, Holmen A, Emblem KE, Rund BR, Agartz I (2013) Age-related cortical thickness differences in adolescents with early-onset schizophrenia compared with healthy adolescents. Psychiatry Res 214:190–196

    Article  PubMed  Google Scholar 

  78. Ecker C, Bookheimer SY, Murphy DG (2015) Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol 14:1121–1134

    Article  PubMed  Google Scholar 

  79. Zielinski BA, Prigge MB, Nielsen JA, Froehlich AL, Abildskov TJ, Anderson JS, Fletcher PT, Zygmunt KM, Travers BG, Lange N, Alexander AL, Bigler ED, Lainhart JE (2014) Longitudinal changes in cortical thickness in autism and typical development. Brain 137:1799–1812

    Article  PubMed  PubMed Central  Google Scholar 

  80. Lange N, Travers BG, Bigler ED, Prigge MB, Froehlich AL, Nielsen JA, Cariello AN, Zielinski BA, Anderson JS, Fletcher PT, Alexander AA, Lainhart JE (2015) Longitudinal volumetric brain changes in autism spectrum disorder ages 6-35 years. Autism Res 8:82–93

    Article  PubMed  Google Scholar 

  81. Wallace GL, Eisenberg IW, Robustelli B, Dankner N, Kenworthy L, Giedd JN, Martin A (2015) Longitudinal cortical development during adolescence and young adulthood in autism spectrum disorder: increased cortical thinning but comparable surface area changes. J Am Acad Child Adolesc Psychiatry 54:464–469

    Article  PubMed  PubMed Central  Google Scholar 

  82. Cao B, Tang Y, Li J, Zhang X, Shang HF, Zhou D (2013) A meta-analysis of voxel-based morphometry studies on gray matter volume alteration in juvenile myoclonic epilepsy. Epilepsy Res 106:370–377

    Article  PubMed  Google Scholar 

  83. Alhusaini S, Ronan L, Scanlon C, Whelan CD, Doherty CP, Delanty N, Fitzsimons M (2013) Regional increase of cerebral cortex thickness in juvenile myoclonic epilepsy. Epilepsia 54:e138–e141

    Article  PubMed  Google Scholar 

  84. Tae WS, Kim SH, Joo EY, Han SJ, Kim IY, Kim SI, Lee JM, Hong SB (2008) Cortical thickness abnormality in juvenile myoclonic epilepsy. J Neurol 255:561–566

    Article  PubMed  Google Scholar 

  85. Ronan L, Alhusaini S, Scanlon C, Doherty CP, Delanty N, Fitzsimons M (2012) Widespread cortical morphologic changes in juvenile myoclonic epilepsy: evidence from structural MRI. Epilepsia 53:651–658

    Article  PubMed  Google Scholar 

  86. Engman E, Malmgren K (2012) Long-term follow-up of memory in patients with epilepsy. In: Zeman A, Kapur N, Jones-Gotman M (eds) Epilepsy & memory. Oxford Scholarship Online, Oxford

    Google Scholar 

  87. Dabbs K, Becker T, Jones J, Rutecki P, Seidenberg M, Hermann B (2012) Brain structure and aging in chronic temporal lobe epilepsy. Epilepsia 53:1033–1043

    Article  PubMed  PubMed Central  Google Scholar 

  88. Helmstaedter C, Elger CE (2009) Chronic temporal lobe epilepsy: a neurodevelopmental or progressively dementing disease? Brain 132:2822–2830

    Article  CAS  PubMed  Google Scholar 

  89. Rapoport JL, Giedd JN, Gogtay N (2012) Neurodevelopmental model of schizophrenia: update 2012. Mol Psychiatry 17:1228–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35:528–548

    Article  PubMed  PubMed Central  Google Scholar 

  91. Pettersson-Yeo W, Allen P, Benetti S, McGuire P, Mechelli A (2011) Dysconnectivity in schizophrenia: where are we now? Neurosci Biobehav Rev 35:1110–1124

    Article  PubMed  Google Scholar 

  92. Tamnes CK, Agartz I (2016) White matter microstructure in early-onset schizophrenia: a systematic review of diffusion tensor imaging studies. J Am Acad Child Adolesc Psychiatry 55:269–279

    Article  PubMed  Google Scholar 

  93. Shaw P, Eckstrand K, Sharp W, Blumenthal J, Lerch JP, Greenstein D, Clasen L, Evans A, Giedd J, Rapoport JL (2007) Attention-deficit/hyperactivity disorder is characterized by a delay in cortical maturation. Proc Natl Acad Sci U S A 104:19649–19654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shaw P, Gilliam M, Liverpool M, Weddle C, Malek M, Sharp W, Greenstein D, Evans A, Rapoport J, Giedd J (2011) Cortical development in typically developing children with symptoms of hyperactivity and impulsivity: support for a dimensional view of attention deficit hyperactivity disorder. Am J Psychiatry 168:143–151

    Article  PubMed  Google Scholar 

  95. Huebner T, Vloet TD, Marx I, Konrad K, Fink GR, Herpertz SC, Herpertz-Dahlmann B (2008) Morphometric brain abnormalities in boys with conduct disorder. J Am Acad Child Adolesc Psychiatry 47:540–547

    Article  PubMed  Google Scholar 

  96. Walhovd KB, Tamnes CK, Østby Y, Due-Tønnessen P, Fjell AM (2012) Normal variation in behavioral adjustment relates to regional differences in cortical thickness in children. Eur Child Adolesc Psychiatry 21:133–140

    Article  PubMed  Google Scholar 

  97. Moran ME, Hulshoff Pol H, Gogtay N (2013) A family affair: brain abnormalities in siblings of patients with schizophrenia. Brain 136:3215–3226

    Article  PubMed  PubMed Central  Google Scholar 

  98. Peters BD, Karlsgodt KH (2015) White matter development in the early stages of psychosis. Schizophr Res 161:61–69

    Article  PubMed  Google Scholar 

  99. Jacobson S, Kelleher I, Harley M, Murtagh A, Clarke M, Blanchard M, Connolly C, O'Hanlon E, Garavan H, Cannon M (2010) Structural and functional brain correlates of subclinical psychotic symptoms in 11-13 year old schoolchildren. NeuroImage 49:1875–1885

    Article  PubMed  Google Scholar 

  100. Satterthwaite TD, Vandekar SN, Wolf DH, Bassett DS, Ruparel K, Shehzad Z, Craddock RC, Shinohara RT, Moore TM, Gennatas ED, Jackson C, Roalf DR, Milham MP, Calkins ME, Hakonarson H, Gur RC, Gur RE (2015) Connectome-wide network analysis of youth with psychosis-Spectrum symptoms. Mol Psychiatry 20:1508–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Goh S, Bansal R, Xu D, Hao X, Liu J, Peterson BS (2011) Neuroanatomical correlates of intellectual ability across the life span. Dev Cogn Neurosci 1:305–312

    Article  PubMed  Google Scholar 

  102. Østby Y, Tamnes CK, Fjell AM, Walhovd KB (2012) Dissociating memory processes in the developing brain: the role of hippocampal volume and cortical thickness in recall after minutes versus days. Cereb Cortex 22:381–390

    Article  PubMed  Google Scholar 

  103. Faradi N, Karama S, Burgaleta M, White MT, Evans AC, Fonov V, Collins DL, Waber DP (2015) Neuroanatomical correlates of behavioral rating versus performance measures of working memory in typically developing children and adolescents. Neuropsychologia 29:82–91

    Article  Google Scholar 

  104. Tamnes CK, Walhovd KB, Grydeland H, Holland D, Østby Y, Dale AM, Fjell AM (2013) Longitudinal working memory development is related to structural maturation of frontal and parietal cortices. J Cogn Neurosci 25:1611–1623

    Article  PubMed  Google Scholar 

  105. Østby Y, Tamnes CK, Fjell AM, Walhovd KB (2011) Morphometry and connectivity of the fronto-parietal verbal working memory network in development. Neuropsychologia 49:3854–3862

    Article  PubMed  Google Scholar 

  106. Ullman H, Almeida R, Klingberg T (2014) Structural maturation and brain activity predict future working memory capacity during childhood development. J Neurosci 34:1592–1598

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Council of Norway and the University of Oslo (to CKT) and the South-Eastern Norway Regional Health Authority (to YØ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Tamnes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tamnes, C.K., Østby, Y. (2018). Morphometry and Development: Changes in Brain Structure from Birth to Adult Age. In: Spalletta, G., Piras, F., Gili, T. (eds) Brain Morphometry. Neuromethods, vol 136. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7647-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7647-8_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7645-4

  • Online ISBN: 978-1-4939-7647-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics