Skip to main content

Production and Chemoselective Modification of Adeno-Associated Virus Site-Specifically Incorporating an Unnatural Amino Acid Residue into Its Capsid

  • Protocol
  • First Online:
Noncanonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

The ability to modify the capsid proteins of human viruses is desirable both for installing probes to study their structure and function, and to attach retargeting agents to engineer viral infectivity. However, the installation of such capsid modifications currently faces two major challenges: (1) The complex and delicate capsid proteins often do not tolerate large modifications, and (2) capsid proteins are composed of the 20 canonical amino acids, precluding site-specific chemical modification of the virus. Here, we describe a technology for generating adeno-associated virus (AAV) while incorporating an unnatural amino acid (UAA) into specific sites of the virus capsid. Incorporation of this UAA is generally tolerated well, presumably due to its small structural footprint. The resulting virus can be precisely functionalized at the site of UAA incorporation using chemoselective conjugation strategies targeted toward the azido side chain of this UAA. This technology provides a powerful way to modify AAV with unprecedented precision to both probe and engineer its entry process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1:427–451. https://doi.org/10.1146/annurev-virology-031413-085355

    Article  PubMed  Google Scholar 

  2. Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12:341–355. https://doi.org/10.1038/nrg2988

    Article  CAS  PubMed  Google Scholar 

  3. Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451. https://doi.org/10.1038/nrg3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92. https://doi.org/10.1007/978-1-61779-370-7_3

    Article  CAS  PubMed  Google Scholar 

  5. Douar AM, Poulard K, Danos O (2003) Deleterious effect of peptide insertions in a permissive site of the AAV2 capsid. Virology 309:203–208

    Article  CAS  PubMed  Google Scholar 

  6. Horowitz ED, Weinberg MS, Asokan A (2011) Glycated AAV vectors: chemical redirection of viral tissue tropism. Bioconjug Chem 22:529–532. https://doi.org/10.1021/bc100477g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Y, Fang Y, Zhou Y, Zandi E, Lee CL, Joo KI, Wang P (2013) Site-specific modification of adeno-associated viruses via a genetically engineered aldehyde tag. Small 9:421–429. https://doi.org/10.1002/smll.201201661

    Article  CAS  PubMed  Google Scholar 

  8. Shi W, Bartlett JS (2003) RGD inclusion in VP3 provides adeno-associated virus type 2 (AAV2)-based vectors with a heparan sulfate-independent cell entry mechanism. Mol Ther 7:515–525

    Article  CAS  PubMed  Google Scholar 

  9. Stachler MD, Chen I, Ting AY, Bartlett JS (2008) Site-specific modification of AAV vector particles with biophysical probes and targeting ligands using biotin ligase. Mol Ther 16:1467–1473. https://doi.org/10.1038/mt.2008.129

    Article  CAS  PubMed  Google Scholar 

  10. Dumas A, Lercher L, Spicer CD, Davis BG (2015) Designing logical codon reassignment—expanding the chemistry in biology. Chem Sci 6:50–69

    Article  CAS  PubMed  Google Scholar 

  11. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. https://doi.org/10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  12. Kelemen RE, Mukherjee R, Cao X, Erickson SB, Zheng Y, Chatterjee A (2016) A precise chemical strategy to alter the receptor specificity of the adeno-associated virus. Angew Chem Int Ed Engl 55:10645–10649. https://doi.org/10.1002/anie.201604067

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee A, Xiao H, Bollong M, Ai HW, Schultz PG (2013) Efficient viral delivery system for unnatural amino acid mutagenesis in mammalian cells. Proc Natl Acad Sci U S A 110:11803–11808. https://doi.org/10.1073/pnas.1309584110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Erickson SB, Mukherjee R, Kelemen RE, Wrobel CJJ, Cao X, Chatterjee A (2017) Precise photoremovable perturbation of a virus–host interaction. Angew Chem Int Ed Engl 56:4234–4237. doi: 10.1002/anie.201700683

  15. Auricchio A, Hildinger M, O’Connor E, Gao GP, Wilson JM (2001) Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 12:71–76. https://doi.org/10.1089/104303401450988

    Article  CAS  PubMed  Google Scholar 

  16. Zheng Y, Lewis TL Jr, Igo P, Polleux F, Chatterjee A (2016) Virus-enabled optimization and delivery of the genetic machinery for efficient unnatural amino acid mutagenesis in mammalian cells and tissues. ACS Synth Biol 6:13. https://doi.org/10.1021/acssynbio.6b00092

    Article  PubMed  Google Scholar 

  17. van Geel R, Pruijn GJ, van Delft FL, Boelens WC (2012) Preventing thiol-yne addition improves the specificity of strain-promoted azide-alkyne cycloaddition. Bioconjug Chem 23:392–398. https://doi.org/10.1021/bc200365k

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kelemen, R.E., Erickson, S.B., Chatterjee, A. (2018). Production and Chemoselective Modification of Adeno-Associated Virus Site-Specifically Incorporating an Unnatural Amino Acid Residue into Its Capsid. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics