Skip to main content

Genetic Code Expansion- and Click Chemistry-Based Site-Specific Protein Labeling for Intracellular DNA-PAINT Imaging

  • Protocol
  • First Online:
Noncanonical Amino Acids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1728))

Abstract

Super-resolution microscopy allows imaging of cellular structures at nanometer resolution. This comes with a demand for small labels which can be attached directly to the structures of interest. In the context of protein labeling, one way to achieve this is by using genetic code expansion (GCE) and click chemistry. With GCE, small labeling handles in the form of noncanonical amino acids (ncAAs) are site-specifically introduced into a target protein. In a subsequent step, these amino acids can be directly labeled with small organic dyes by click chemistry reactions. Click chemistry labeling can also be combined with other methods, such as DNA-PAINT in which a “clickable” oligonucleotide is first attached to the ncAA-bearing target protein and then labeled with complementary fluorescent oligonucleotides. This protocol will cover both aspects: I describe (1) how to encode ncAAs and perform intracellular click chemistry-based labeling with an improved GCE system for eukaryotic cells and (2) how to combine click chemistry-based labeling with DNA-PAINT super-resolution imaging. As an example, I show click-PAINT imaging of vimentin and low-abundance nuclear protein, nucleoporin 153.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. https://doi.org/10.1126/science.1127344

    Article  CAS  PubMed  Google Scholar 

  2. Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19(11):780–782

    Article  CAS  PubMed  Google Scholar 

  3. Hell SW (2007) Far-field optical nanoscopy. Science 316(5828):1153–1158. https://doi.org/10.1126/science.1137395

    Article  CAS  PubMed  Google Scholar 

  4. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. https://doi.org/10.1038/nmeth929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hess ST, Girirajan TP, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. https://doi.org/10.1529/biophysj.106.091116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem 47(33):6172–6176. https://doi.org/10.1002/anie.200802376

    Article  CAS  Google Scholar 

  7. Gustafsson MG (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102(37):13081–13086. https://doi.org/10.1073/pnas.0406877102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang B, Babcock H, Zhuang X (2010) Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143(7):1047–1058. https://doi.org/10.1016/j.cell.2010.12.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sahl SJ, Moerner WE (2013) Super-resolution fluorescence imaging with single molecules. Curr Opin Struct Biol 23(5):778–787. https://doi.org/10.1016/j.sbi.2013.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu Z, Lavis LD, Betzig E (2015) Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell 58(4):644–659. https://doi.org/10.1016/j.molcel.2015.02.033

    Article  CAS  PubMed  Google Scholar 

  11. Sydor AM, Czymmek KJ, Puchner EM, Mennella V (2015) Super-resolution microscopy: from single molecules to supramolecular assemblies. Trends Cell Biol 25(12):730–748. https://doi.org/10.1016/j.tcb.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  12. Lakadamyali M (2014) Super-resolution microscopy: going live and going fast. Chemphyschem 15(4):630–636. https://doi.org/10.1002/cphc.201300720

    Article  CAS  PubMed  Google Scholar 

  13. Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190(2):165–175. https://doi.org/10.1083/jcb.201002018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dempsey GT (2013) A user’s guide to localization-based super-resolution fluorescence imaging. Methods Cell Biol 114:561–592. https://doi.org/10.1016/B978-0-12-407761-4.00024-5

    Article  PubMed  Google Scholar 

  15. Deschout H, Cella Zanacchi F, Mlodzianoski M, Diaspro A, Bewersdorf J, Hess ST, Braeckmans K (2014) Precisely and accurately localizing single emitters in fluorescence microscopy. Nat Methods 11(3):253–266. https://doi.org/10.1038/nmeth.2843

    Article  CAS  PubMed  Google Scholar 

  16. Bachmann M, Fiederling F, Bastmeyer M (2016) Practical limitations of superresolution imaging due to conventional sample preparation revealed by a direct comparison of CLSM, SIM and dSTORM. J Microsc 262(3):306–315. https://doi.org/10.1111/jmi.12365

    Article  CAS  PubMed  Google Scholar 

  17. Fernandez-Suarez M, Ting AY (2008) Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Biol 9(12):929–943. https://doi.org/10.1038/nrm2531

    Article  CAS  PubMed  Google Scholar 

  18. van de Linde S, Heilemann M, Sauer M (2012) Live-cell super-resolution imaging with synthetic fluorophores. Annu Rev Phys Chem 63:519–540. https://doi.org/10.1146/annurev-physchem-032811-112012

    Article  PubMed  Google Scholar 

  19. van de Linde S, Aufmkolk S, Franke C, Holm T, Klein T, Loschberger A, Proppert S, Wolter S, Sauer M (2013) Investigating cellular structures at the nanoscale with organic fluorophores. Chem Biol 20(1):8–18. https://doi.org/10.1016/j.chembiol.2012.11.004

    Article  PubMed  Google Scholar 

  20. Lang K, Chin JW (2014) Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem Rev 114(9):4764–4806. https://doi.org/10.1021/cr400355w

    Article  CAS  PubMed  Google Scholar 

  21. Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444. https://doi.org/10.1146/annurev.biochem.052308.105824

    Article  CAS  PubMed  Google Scholar 

  22. Lemke EA (2014) The exploding genetic code. Chembiochem 15(12):1691–1694. https://doi.org/10.1002/cbic.201402362

    Article  CAS  PubMed  Google Scholar 

  23. Fekner T, Chan MK (2011) The pyrrolysine translational machinery as a genetic-code expansion tool. Curr Opin Chem Biol 15(3):387–391. https://doi.org/10.1016/j.cbpa.2011.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan W, Tharp JM, Liu WR (2014) Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim Biophys Acta 1844(6):1059–1070. https://doi.org/10.1016/j.bbapap.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yanagisawa T, Ishii R, Fukunaga R, Kobayashi T, Sakamoto K, Yokoyama S (2008) Multistep engineering of pyrrolysyl-tRNA synthetase to genetically encode N(epsilon)-(o-azidobenzyloxycarbonyl) lysine for site-specific protein modification. Chem Biol 15(11):1187–1197. https://doi.org/10.1016/j.chembiol.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  26. Chin JW (2014) Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem 83:379–408. https://doi.org/10.1146/annurev-biochem-060713-035737

    Article  CAS  PubMed  Google Scholar 

  27. Kaya E, Vrabel M, Deiml C, Prill S, Fluxa VS, Carell T (2012) A genetically encoded norbornene amino acid for the mild and selective modification of proteins in a copper-free click reaction. Angew Chem 51(18):4466–4469. https://doi.org/10.1002/anie.201109252

    Article  CAS  Google Scholar 

  28. Lang K, Davis L, Torres-Kolbus J, Chou C, Deiters A, Chin JW (2012) Genetically encoded norbornene directs site-specific cellular protein labelling via a rapid bioorthogonal reaction. Nat Chem 4(4):298–304. https://doi.org/10.1038/nchem.1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Plass T, Milles S, Koehler C, Schultz C, Lemke EA (2011) Genetically encoded copper-free click chemistry. Angew Chem 50(17):3878–3881. https://doi.org/10.1002/anie.201008178

    Article  CAS  Google Scholar 

  30. Plass T, Milles S, Koehler C, Szymanski J, Mueller R, Wiessler M, Schultz C, Lemke EA (2012) Amino acids for Diels-Alder reactions in living cells. Angew Chem 51(17):4166–4170. https://doi.org/10.1002/anie.201108231

    Article  CAS  Google Scholar 

  31. Nikic I, Plass T, Schraidt O, Szymanski J, Briggs JA, Schultz C, Lemke EA (2014) Minimal tags for rapid dual-color live-cell labeling and super-resolution microscopy. Angew Chem 53(8):2245–2249. https://doi.org/10.1002/anie.201309847

    Article  CAS  Google Scholar 

  32. Uttamapinant C, Howe JD, Lang K, Beranek V, Davis L, Mahesh M, Barry NP, Chin JW (2015) Genetic code expansion enables live-cell and super-resolution imaging of site-specifically labeled cellular proteins. J Am Chem Soc 137(14):4602–4605. https://doi.org/10.1021/ja512838z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Nikic I, Estrada Girona G, Kang JH, Paci G, Mikhaleva S, Koehler C, Shymanska NV, Ventura Santos C, Spitz D, Lemke EA (2016) Debugging eukaryotic genetic code expansion for site-specific click-PAINT super-resolution microscopy. Angew Chem 55(52):16172–16176. https://doi.org/10.1002/anie.201608284

    Article  CAS  Google Scholar 

  34. Hughes LD, Rawle RJ, Boxer SG (2014) Choose your label wisely: water-soluble fluorophores often interact with lipid bilayers. PLoS One 9(2):e87649. https://doi.org/10.1371/journal.pone.0087649

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jungmann R, Steinhauer C, Scheible M, Kuzyk A, Tinnefeld P, Simmel FC (2010) Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett 10(11):4756–4761. https://doi.org/10.1021/nl103427w

    Article  CAS  PubMed  Google Scholar 

  36. Sharonov A, Hochstrasser RM (2006) Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc Natl Acad Sci U S A 103(50):18911–18916. https://doi.org/10.1073/pnas.0609643104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jungmann R, Avendano MS, Woehrstein JB, Dai M, Shih WM, Yin P (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11(3):313–318. https://doi.org/10.1038/nmeth.2835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banterle N, Bui KH, Lemke EA, Beck M (2013) Fourier ring correlation as a resolution criterion for super-resolution microscopy. J Struct Biol 183(3):363–367. https://doi.org/10.1016/j.jsb.2013.05.004

    Article  CAS  PubMed  Google Scholar 

  39. Nikic I, Kang JH, Girona GE, Aramburu IV, Lemke EA (2015) Labeling proteins on live mammalian cells using click chemistry. Nat Protoc 10(5):780–791. https://doi.org/10.1038/nprot.2015.045

    Article  CAS  PubMed  Google Scholar 

  40. Hoffmann JE, Plass T, Nikic I, Aramburu IV, Koehler C, Gillandt H, Lemke EA, Schultz C (2015) Highly stable trans-Cyclooctene amino acids for live-cell labeling. Chemistry 21(35):12266–12270. https://doi.org/10.1002/chem.201501647

    Article  CAS  PubMed  Google Scholar 

  41. Dai M, Jungmann R, Yin P (2016) Optical imaging of individual biomolecules in densely packed clusters. Nat Nanotechnol 11:798. https://doi.org/10.1038/nnano.2016.95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dai M (2017) DNA-PAINT super-resolution imaging for nucleic acid nanostructures. Methods Mol Biol 1500:185–202. https://doi.org/10.1007/978-1-4939-6454-3_13

    Article  PubMed  Google Scholar 

  43. Pott M, Schmidt MJ, Summerer D (2014) Evolved sequence contexts for highly efficient amber suppression with noncanonical amino acids. ACS Chem Biol 9(12):2815–2822. https://doi.org/10.1021/cb5006273

    Article  CAS  PubMed  Google Scholar 

  44. Hug N, Longman D, Caceres JF (2016) Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res 44(4):1483–1495. https://doi.org/10.1093/nar/gkw010

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ori A, Banterle N, Iskar M, Andres-Pons A, Escher C, Khanh Bui H, Sparks L, Solis-Mezarino V, Rinner O, Bork P, Lemke EA, Beck M (2013) Cell type-specific nuclear pores: a case in point for context-dependent stoichiometry of molecular machines. Mol Syst Biol 9:648. https://doi.org/10.1038/msb.2013.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

I would like to thank Ivana Milošević for her valuable help with the manuscript proofreading. I would like to thank all the members of the Lemke group for their help and support. I would also like to thank EMBL’s Advanced Light Microscopy Facility, as well as my postdoctoral funding (EMBO Long-Term and Marie Curie IEF fellowships). I am currently supported by the Emmy-Noether programme of the Deutsche Forschungsgemeinschaft (DFG) and the Werner Reichardt Centre for Integrative Neuroscience (CIN) at the Eberhard Karls University of Tuebingen. The CIN is an Excellence Cluster funded by the DFG within the framework of the Excellence Initiative (EXC 307).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Nikić-Spiegel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nikić-Spiegel, I. (2018). Genetic Code Expansion- and Click Chemistry-Based Site-Specific Protein Labeling for Intracellular DNA-PAINT Imaging. In: Lemke, E. (eds) Noncanonical Amino Acids. Methods in Molecular Biology, vol 1728. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7574-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7574-7_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7573-0

  • Online ISBN: 978-1-4939-7574-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics