Skip to main content

Neurotrophic Factors: An Overview

  • Protocol
  • First Online:
Neurotrophic Factors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1727))

Abstract

The neurotrophins are a family of closely related proteins that were first identified as survival factors for sympathetic and sensory neurons and have since been shown to control a number of aspects of survival, development, and function of neurons in both the central and peripheral nervous systems. Limiting quantities of neurotrophins during development control the numbers of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. Biological effects of each of the four mammalian neurotrophins are mediated through activation of one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB, and TrkC). In addition, all neurotrophins activate the p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor superfamily. Neurotrophin engagement of Trk receptors leads to activation of Ras, phosphatidylinositol 3-kinase, phospholipase C-γ1, and signaling pathways controlled through these proteins, including the mitogen-activated protein kinases. Neurotrophin availability is required into adulthood, where they control synaptic function and plasticity and sustain neuronal cell survival, morphology, and differentiation. This article will provide an overview of neurotrophin biology, their receptors, and signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Levi-Montalcini R (1987) The nerve growth factor 35 years later. Science 237:1154–1162

    Article  CAS  PubMed  Google Scholar 

  2. Dreyfus CF (1989) Effects of nerve growth factor on cholinergic brain neurons. Trends Pharmacol Sci 10:145–149

    Article  CAS  PubMed  Google Scholar 

  3. Hamburger V, Levi-Montalcini R (1949) Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J Exp Zool 111:457–501

    Article  CAS  PubMed  Google Scholar 

  4. Thoenen H (1995) Neurotrophins and neuronal plasticity. Science 270:593–598

    Article  CAS  PubMed  Google Scholar 

  5. Ginty DD, Segal RA (2002) Retrograde neurotrophin signaling: Trk-ing along the axon. Curr Opin Neurobiol 12:268–274

    Article  CAS  PubMed  Google Scholar 

  6. Hamburger V, Brunso-Bechthold JK, Yip JW (1981) Neuronal death in the spinal ganglia of the chick embryo and its reduction by nerve growth factor. J Neurosci 1:60–71

    CAS  PubMed  Google Scholar 

  7. Barde Y-A (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534

    Article  CAS  PubMed  Google Scholar 

  8. Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18:223–253

    Article  CAS  PubMed  Google Scholar 

  9. Chao MV, Hempstead BL (1995) p75 and Trk: a two-receptor system. Trends Neurosci 18:321–326

    Article  CAS  PubMed  Google Scholar 

  10. Barde Y-A, Edgar D, Thoenen H (1982) Purification of a new neurotrophic factor from mammalian brain. EMBO J 1:549–553

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Leibrock J, Lottspeich F, Hohn A, Hofer M, Hengerer B, Masiakowski P, Thoenen H, Barde YA (1994) Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149–152

    Article  Google Scholar 

  12. Ibáñez CF (1995) Neurotrophic factors: from structure-function studies to designing effective therapeutics. Trends Biotechnol 13:217–227

    Article  PubMed  Google Scholar 

  13. Berkemeier LR, Winslow JW, Kaplan DR, Nicolics K, Goeddel DV, Rosenthal A (1991) Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB. Neuron 7:857–866

    Article  CAS  PubMed  Google Scholar 

  14. Ip NY, Ibáñez CF, Nye SH, McClain J, Jones PF, Gies DR, Belluscio L, Le Beau MM, Espinosa R 3rd, Squinto SP, Persson H, Yancopoulos GD (1992) Mammalian neurotrophin-4: structure, chromosomal localization, tissue distribution, and receptor specificity. Proc Natl Acad Sci U S A 89:3060–3064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Götz R, Köster R, Winkler C, Raulf F, Lottspeich F, Schartl M, Thoenen H (1994) Neurotrophin-6 is a new member of the nerve growth factor family. Nature 372:266–269

    Article  PubMed  Google Scholar 

  16. Lai KO, Fu WY, Ip FCF, Ip NY (1998) Cloning and expression of a novel neurotrophin, NT-7, from carp. Mol Cell Neurosci 11:64–76

    Article  CAS  PubMed  Google Scholar 

  17. Reichardt LF (2006) Neurotrophin-regulated signalling pathways. Philos Trans R Soc Lond Ser B Biol Sci 361:1545–1564

    Article  CAS  Google Scholar 

  18. Wiesmann C, Ultsch MH, Bass SH, de Vos AM (1999) Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401:184–188

    Article  CAS  PubMed  Google Scholar 

  19. McDonald NQ, Lapatto R, Murray-Rust J, Gunning J, Wlodawer A, Blundell TL (1991) New protein fold revealed by a 2.3-A resolution crystal structure of nerve growth factor. Nature 354:411–414

    Article  CAS  PubMed  Google Scholar 

  20. Robinson RC, Radziejewski C, Stuart DI, Jones EY (1995) Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer. Biochemistry 34:4139–4146

    Article  CAS  PubMed  Google Scholar 

  21. Robinson RC, Radziejewski C, Spraggon G, Greenwald J, Kostura MR, Burtnick LD, Stuart DI, Choe S, Jones EY (1999) The structures of the neurotrophin 4 homodimer and the brain-derived neurotrophic factor/neurotrophin 4 heterodimer reveal a common Trk-binding site. Protein Sci 8:2589–2597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindsay RM, Yancopoulos GD (1996) GDNF in a bind with known orphan: accessory implicated in new twist. Neuron 17:571–574

    Article  CAS  PubMed  Google Scholar 

  23. Barde Y-A (1994) Neurotrophic factors: an evolutionary perspective. J Neurobiol 25:1329–1333

    Article  CAS  PubMed  Google Scholar 

  24. Kullander K, Carlson B, Hallböök FJ (1997) Molecular phylogeny and evolution of the neurotrophins from monotremes and marsupials. J Mol Evol 45:311–321

    Article  CAS  PubMed  Google Scholar 

  25. Butte MJ (2001) Neurotrophic factor structures reveal clues to evolution, binding, specificity, and receptor activation. Cell Mol Life Sci 58:1003–1013

    Article  CAS  PubMed  Google Scholar 

  26. Ip NY, Yancopoulos GD (1996) The neurotrophins and CNTF: two families of collaborative neurotrophic factors. Annu Rev Neurosci 19:491–415

    Article  CAS  PubMed  Google Scholar 

  27. Doré S, Kar S, Quirion R (1997) Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci 20:326–331

    Article  PubMed  Google Scholar 

  28. Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci U S A 83:3012–3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Farkas LM, Dünker N, Roussa E, Unsicker K, Krieglstein K (2003) Transforming growth factor-βs are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J Neurosci 23:5178–5186

    CAS  PubMed  Google Scholar 

  30. Miao N, Wang M, Ott JA, D’Alessandro JS, Woolf TM, Bumcrot DA, Mahanthappa NK, Pang K (1997) Sonic hedgehog promotes the survival of specific CNS neuron populations and protects these cells from toxic insult in vitro. J Neurosci 17:5891–5899

    CAS  PubMed  Google Scholar 

  31. Bothwell M (2016) Recent advances in understanding neurotrophin signaling. F1000Res 5. 10.12688/f1000research.8434.1

  32. Radeke MJ, Misko TP, Hsu C, Herzenberg LA, Shooter E (1987) Gene transfer and molecular cloning of the rat nerve growth factor receptor. Nature 325:593–597

    Article  CAS  PubMed  Google Scholar 

  33. Rodriguez-Tébar A, Dechant G, Barde Y-A (1990) Binding of brain-derived neurotrophic factor to the nerve growth factor receptor. Neuron 4:487–492

    Article  PubMed  Google Scholar 

  34. Rodríguez-Tébar A, Dechant G, Götz R, Barde Y-A (1992) Binding of neurotrophin-3 to its neuronal receptors and interactions with nerve growth factor and brain-derived neurotrophic factor. EMBO J 11:917–922

    PubMed  PubMed Central  Google Scholar 

  35. He XE, Garcia KC (2004) Structure of nerve growth factor complexed with the shared neurotrophin receptor p75. Science 304:870–875

    Article  CAS  PubMed  Google Scholar 

  36. Ibáñez CF, Simi A (2012) p75 neurotrophin receptor signaling in nervous system injury and degeneration: paradox and opportunity. Trends Neurosci 35:431–440

    Article  PubMed  CAS  Google Scholar 

  37. Kaplan DR, Hempstead BL, Martin-Zanca D, Chao MV, Parada LF (1991) The trk proto-oncogene product: a signal transducing receptor for nerve growth factor. Science 252:554–558

    Article  CAS  PubMed  Google Scholar 

  38. Klein R, Jing SQ, Nanduri V, O’Rourke E, Barbacid M (1991) The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65:189–197

    Article  CAS  PubMed  Google Scholar 

  39. Klein R, Nanduri V, Jing SA, Lambelle F, Tapley P, Bryant S, Cordon-Cardo C, Jones KR, Reichardt LF, Barbacid M (1991) The trkB tyrosine protein kinase is a receptor for brain-derived neurotrophic factor and neurotrophin-3. Cell 66:395–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Squinto SP, Stitt TN, Aldrich TH, Davis S, Bianco SM, Radziejewski C, Glass DJ, Masiakowski P, Furth ME, Valenzuela DM, DiStefano PS, Yancopoulos GD (1991) trkB encodes a functional receptor for brain-derived neurotrophic factor and neurotrophin-3 but not nerve growth factor. Cell 65:885–893

    Article  CAS  PubMed  Google Scholar 

  41. Lamballe F, Klein R, Barbacid M (1991) trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3. Cell 66:967–979

    Article  CAS  PubMed  Google Scholar 

  42. Bradshaw RA, Pundavela J, Biarc J, Chalkley RJ, Burlingame AL, Hondermarck H (2015) NGF and ProNGF: regulation of neuronal and neoplastic responses through receptor signaling. Adv Biol Regul 58:16–27

    Article  CAS  PubMed  Google Scholar 

  43. Benedetti M, Levi A, Chao MV (1993) Differential expression of nerve growth factor receptors leads to altered binding affinity and neurotrophin responsiveness. Proc Natl Acad Sci U S A 90:7859–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bibel M, Hoppe E, Barde Y-A (1999) Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J 18:616–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mahadeo D, Kaplan L, Chao MV, Hempstead BL (1994) High affinity nerve growth factor binding displays a faster rate of association than p140trk binding. J Biol Chem 269:6884–6891

    CAS  PubMed  Google Scholar 

  46. Esposito D, Patel P, Stephens RM, Perez P, Chao MV, Kaplan DR, Hempstead BL (2001) The cytoplasmic and transmembrane domains of the p75 and Trk A receptors regulate high affinity binding to nerve growth factor. J Biol Chem 276:32687–32695

    Article  CAS  PubMed  Google Scholar 

  47. Curtis R, Adryan KM, Stark JL, Park JS, Compton DL, Weskamp G, Huber LJ, Chao MV, Jaenisch R, Lee KF, Lindsay RM, DiStefano PS (1995) Differential role of the low affinity neurotrophin receptor (p75) in retrograde axonal transport of the neurotrophins. Neuron 14:1201–1211

    Article  CAS  PubMed  Google Scholar 

  48. Makkerh JP, Ceni C, Auld DS, Vaillancourt F, Dorval G, Barker PA (2005) p75 neurotrophin receptor reduces ligand-induced Trk receptor ubiquitination and delays Trk receptor internalization and degradation. EMBO J 6:936–941

    Article  CAS  Google Scholar 

  49. Geetha T, Jiang J, Wooten MW (2005) Lysine 63 polyubiquitination of the nerve growth factor receptor TrkA directs internalization and signaling. Mol Cell 20:301–312

    Article  CAS  PubMed  Google Scholar 

  50. Bentley CA, Lee KF (2000) p75 is important for axon growth and schwann cell migration during development. J Neurosci 20:7706–7715

    CAS  PubMed  Google Scholar 

  51. Harrison SMW, Jones ME, Uecker S, Albers KM, Kudrycki KE, Davis BM (2000) Levels of nerve growth factor and neurotrophin-3 are affected differentially by the presence of p75 in sympathetic neurons in vivo. J Comp Neurol 424:99–110

    Article  CAS  PubMed  Google Scholar 

  52. Lee K-F, Li E, Huber LJ, Landis SC, Sharpe AH, Chao MV, Jaenisch R (1992) Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69:737–749

    Article  CAS  PubMed  Google Scholar 

  53. Lee KF, Bachman K, Landis S, Jaenisch R (1994) Dependence on p75 for innervation of some sympathetic targets. Science 263:1447–1449

    Article  CAS  PubMed  Google Scholar 

  54. Stucky CL, Koltzenburg M (1997) The low-affinity neurotrophin receptor p75 regulates the function but not the selective survival of specific subpopulations of sensory neurons. J Neurosci 17:4398–4405

    CAS  PubMed  Google Scholar 

  55. Ultsch MH, Wiesmann C, Simmons LC, Henrich J, Yang M, Reilly D, Bass SH, de Vos AM (1999) Crystal structures of the neurotrophin-binding domain of TrkA, TrkB and TrkC. J Mol Biol 290:149–159

    Article  CAS  PubMed  Google Scholar 

  56. Urfer R, Tsoulfas P, O’Connell L, Hongo JA, Zhao W, Presta LG (1998) High resolution mapping of the binding site of TrkA for nerve growth factor and TrkC for neurotrophin-3 on the second immunoglobulin-like domain of the Trk receptors. J Biol Chem 273:5829–5840

    Article  CAS  PubMed  Google Scholar 

  57. Staniszewska I, Sariyer IK, Lecht S, Brown MC, Walsh EM, Tuszynski GP, Safak M, Lazarovici P, Marcinkiewicz C (2008) Integrin α9β1 is a receptor for nerve growth factor and other neurotrophins. J Cell Sci 121:504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Weiss A, Schlessinger J (1998) Switching signals on or off by receptor dimerization. Cell 94:277–280

    Article  CAS  PubMed  Google Scholar 

  59. Deinhardt K, Chao MV (2014) Trk receptors. Handb Exp Pharmacol 220:103–119

    Article  CAS  PubMed  Google Scholar 

  60. Lee R, Kermani P, Teng KK, Hempstead BL (2001) Regulation of cell survival by secreted proneurotrophins. Science 294:1945–1948

    Article  CAS  PubMed  Google Scholar 

  61. Barford K, Deppmann C, Winckler B (2016) The neurotrophin receptor signaling endosome: where trafficking meets signaling. Dev Neurobiol 77(4):405–418. https://doi.org/10.1002/dneu.22427

    Article  CAS  Google Scholar 

  62. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  63. Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci 19:463–489

    Article  CAS  PubMed  Google Scholar 

  64. York RD, Molliver DC, Grewal SS, Stenberg PE, McCleskey EW, Stork PJS (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 20:8069–8083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yamashita N, Kuruvilla R (2016) Neurotrophin signaling endosomes: biogenesis, regulation, and functions. Curr Opin Neurobiol 39:139–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang Z (2016) Transactivation of epidermal growth factor receptor by G protein-coupled receptors: recent progress, challenges and future research. Int J Mol Sci 17(1). https://doi.org/10.3390/ijms17010095

  67. Luttrell LM, Daaka Y, Lefkowitz RJ (1999) Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr Opin Cell Biol 11:177–180

    Article  CAS  PubMed  Google Scholar 

  68. Lee FS, Chao MV (2001) Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc Natl Acad Sci U S A 98:3555–3560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lee FS, Rajagopal R, Kim AH, Chang PC, Chao MV (2002) Activation of Trk neurotrophin receptor signaling by pituitary adenylate cyclase-activating polypeptides. J Biol Chem 277:9096–9102

    Article  CAS  PubMed  Google Scholar 

  70. Rajagopal R, Chen ZY, Lee FS, Chao MV (2004) Transactivation of Trk neurotrophin receptors by G-protein-coupled receptor ligands occurs on intracellular membranes. J Neurosci 24:6650–6658

    Article  CAS  PubMed  Google Scholar 

  71. Rajagopal R, Chao MV (2006) A role for Fyn in Trk receptor transactivation by G-protein-coupled receptor signaling. Mol Cell Neurosci 33:36–46

    Article  CAS  PubMed  Google Scholar 

  72. Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Annu Rev Neurosci 24:1217–1281

    Article  CAS  PubMed  Google Scholar 

  73. Lu B, Pang PT, Woo NH (2005) The yin and yang of neurotrophin action. Nat Rev Neurosci 6:603–614

    Article  CAS  PubMed  Google Scholar 

  74. Hempstead BL (2014) Deciphering proneurotrophin actions. Handb Exp Pharmacol 220:17–32

    Article  CAS  PubMed  Google Scholar 

  75. Mitre M, Mariga A, Chao MV (2017) Neurotrophin signalling: novel insights into mechanisms and pathophysiology. Clin Sci (Lond) 131:13–23

    Article  CAS  Google Scholar 

  76. Otten U, Ehrhard P, Peck R (1989) Nerve growth factor induces growth and differentiation of human B lymphocytes. Proc Natl Acad Sci U S A 86:10059–10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Thorpe LW, Perez-Polo JR (1987) The influence of nerve growth factor on the in vitro proliferative response of rat spleen lymphocytes. J Neurosci Res 18:134–139

    Article  CAS  PubMed  Google Scholar 

  78. Matsuda H, Coughlin MD, Bienenstock J, Denburg JA (1988) Nerve growth factor promotes human hemopoietic colony growth and differentiation. Proc Natl Acad Sci U S A 85:6508–6512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Brodie C, Gelfand EW (1992) Functional nerve growth factor receptors on human B lymphocytes: interaction with IL2. J Immunol 148:171–178

    Google Scholar 

  80. Thorpe LW, Werrbach-Perez K, PerezPolo JR (1987) Effects of nerve growth factor expression on interleukin-2 receptors on cultured human lymphocytes. Ann N Y Acad Sci 496:310–311

    Article  CAS  PubMed  Google Scholar 

  81. Boyle MDP, Lawman MJP, Gee AP, Young M (1985) Nerve growth factor: a chemotactic factor for polymorphonuclear leukocytes in vivo. J Immunol 134:564–568

    CAS  PubMed  Google Scholar 

  82. Gee AP, Boyle MDP, Munger KL, Lawman MJP, Young M (1983) Nerve growth factor: stimulation of polymorphonuclear leukocyte chemotaxis in vitro. Proc Natl Acad Sci U S A 80:7215–7218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gudat F, Laubscher A, Otten U, Pletscher A (1981) Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits. Br J Pharmacol 74:533–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Torcia M, Bracci-Laudiero L, Lucibello M, Nencioni L, Labardi D, Rubartelli A, Cozzolino F, Aloe L, Garaci E (1996) Nerve growth factor is an autocrine factor for memory B lymphocytes. Cell 85:1–20

    Article  Google Scholar 

  85. Ehrhard PB, Ganter U, Bauer J, Otten U (1993) Expression of functional trk protooncogene in human monocytes. Proc Natl Acad Sci U S A 90:5423–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ehrhard PB, Erb P, Graumann U, Otten U (1993) Expression of nerve growth factor and nerve growth factor receptor tyrosine kinase Trk in activated CD4-positive T-cell clones. Proc Natl Acad Sci U S A 90:10984–10988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Santambrogio L, Benedetti M, Chao MV, Muzaffar R, Kulig K, Gabellini N, Hochwald G (1994) Nerve growth factor production by lymphocytes. J Immunol 153:4488–4495

    CAS  PubMed  Google Scholar 

  88. Bracci-Laudiero L, Aloe L, Caroleo MC, Buanne P, Costa N, Starace G, Lundeberg T (2005) Endogenous NGF regulates CGRP expression in human monocytes, and affects HLA-DR and CD86 expression and IL-10 production. Blood 106:3507–3514

    Article  CAS  PubMed  Google Scholar 

  89. Aloe L, Levi-Montalcini R (1977) Mast cells increase in tissues of neonatal rats injected with nerve growth factor. Brain Res 133:358–366

    Article  CAS  PubMed  Google Scholar 

  90. Marshall JS, Stead RH, McSharry C, Nielsen L, Bienenstock J (1990) The role of mast cell degranulation products in mast cell hyperplasia. I. Mechanism of action of nerve growth factor. J Immunol 144:1886–1892

    CAS  PubMed  Google Scholar 

  91. Matsuda H, Kannan Y, Ushio H, Kiso Y, Kanemoto T, Suzuki H, Kitamura Y (1991) Nerve growth factor induces development of connective tissue-type mast cells in vitro from murine bone marrow cells. J Exp Med 174:7–14

    Article  CAS  PubMed  Google Scholar 

  92. Aloe L, De Simone R (1989) NGF primed spleen cells injected in brain of developing rats differentiate into mast cells. Int J Dev Neurosci 7:565–573

    Article  CAS  PubMed  Google Scholar 

  93. Bischoff SC, Dahinden CA (1992) Effect of nerve growth factor on the release of inflammatory mediators by mature human basophils. Blood 79:2662–2669

    CAS  PubMed  Google Scholar 

  94. Burgi B, Otten UH, Ochensberger B, Rihs S, Heese K, Ehrhard PB, Ibanez CF, Dahinden CA (1996) Basophil priming by neurotrophic factors. Activation through the trk receptor. J Immunol 157:5582–5588

    CAS  PubMed  Google Scholar 

  95. Horigome K, Pryor ED, Bullock EM, Johnson EM Jr (1993) Mediator release from mast cells by nerve growth factor. Neurotrophin specificity and receptor mediation. J Biol Chem 268:14881–14887

    CAS  PubMed  Google Scholar 

  96. Horigome K, Bullock ED, Johnson EM Jr (1994) Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J Biol Chem 269:2695–2702

    CAS  PubMed  Google Scholar 

  97. Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R (1993) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci U S A 91:3739–3743

    Article  Google Scholar 

  98. Nilsson G, Forsberg-Nilsson K, Xiang Z, Hallböök F, Nilsson K, Metcalfe DD (1997) Human mast cells express functional TrkA and are a source of nerve growth factor. Eur J Immunol 27:2295–2301

    Article  CAS  PubMed  Google Scholar 

  99. Tam SY, Tsai M, Yamaguchi M, Yano K, Butterfield J, Galli SJ (1997) Expression of functional TrkA receptor tyrosine kinase in the HMC-1 human mast cell line and in human mast cells. Blood 90:1807–1820

    CAS  PubMed  Google Scholar 

  100. Skaper SD, Pollock M, Facci L (2001) Rat peritoneal mast cells differentially express and release active high molecular weight neurotrophins. J Neurochem 97:177–185

    CAS  Google Scholar 

  101. Solomon A, Aloe L, Pe’er J, Frucht-Pery J, Bonini S, Bonini S, Levi-Schaffer F (1998) Nerve growth factor is preformed in and activates human peripheral blood eosinophils. J Allergy Clin Immunol 102:454–460

    Article  CAS  PubMed  Google Scholar 

  102. Aloe L, Skaper SD, Leon L, Levi-Montalcini R (1994) Nerve growth factor and autoimmune diseases. Autoimmunity 19:141–150

    Article  CAS  PubMed  Google Scholar 

  103. Ojeda SR, Hill DF, Katz KH (1991) The genes encoding nerve growth factor and its receptor are expressed in the developing female rat hypothalamus. Mol Brain Res 9:47–55

    Article  CAS  PubMed  Google Scholar 

  104. Lathinen T, Soinila S, Lakshmanan J (1989) Biological demonstration of nerve growth factor in the rat pituitary gland. Neuroscience 30:165–170

    Article  Google Scholar 

  105. Dicou E, Lee J, Brachet P (1986) Synthesis of nerve growth factor mRNA and precursor protein in the thyroid and parathyroid glands of the rat. Proc Natl Acad Sci U S A 83:7084–7088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Otten U, Baumann JB, Girard J (1979) Stimulation of the pituitary-adrenocortical axis by nerve growth factor. Nature 282:413–414

    Article  CAS  PubMed  Google Scholar 

  107. Scaccianoce S, Cigliana G, Nicolai R, Muscolo LA, Porcu A, Navarra D, Perez-Polo JR, Angelucci L (1993) Hypothalamic involvement in the activation of the pituitary-adrenocortical axis by nerve growth factor. Neuroendocrinology 58:202–209

    Article  CAS  PubMed  Google Scholar 

  108. Aloe L, Cozzari C, Calissano P, Levi-Montalcini R (1981) Somatic and behavioral postnatal effects of fetal injections of nerve growth factor antibodies in the rat. Nature 291:413–415

    Article  CAS  PubMed  Google Scholar 

  109. Johnson EM Jr, Osborne PA, Rydel RE, Schmidt RE, Pearson J (1983) Characterization of the effects of autoimmune nerve growth factor deprivation in the developing guinea pig. Neuroscience 8:631–642

    Article  CAS  PubMed  Google Scholar 

  110. Vidaltamayo R, Mery CM, Angeles-Angeles A, Robles-Díaz G, Hiriart M (2003) Expression of nerve growth factor in human pancreatic beta cells. Growth Factors 21:103–107

    Article  CAS  PubMed  Google Scholar 

  111. Navarro-Tableros V, Fiordelisio T, Hernandez-Cruz A, Hiriart M (2007) Nerve growth factor promotes development of glucose-induced insulin secretion in rat neonate pancreatic beta cells by modulating calcium channels. Channels (Austin) 1:408–416

    Article  Google Scholar 

  112. Miao G, Mace J, Kirby M, Hopper A, Peverini R, Chinnock R, Shapiro J, Hathout E (2005) Beneficial effects of nerve growth factor on islet transplantation. Transplant Proc 37:3490–3502

    Article  CAS  PubMed  Google Scholar 

  113. Hata T, Sakata N, Yoshimatsu G, Tsuchiya H, Fukase M, Ishida M, Aoki T, Katayose Y, Egawa S, Unno M (2015) Nerve growth factor improves survival and function of transplanted islets via TrkA-mediated β cell proliferation and revascularization. Transplantation 99:1132–1143

    Article  CAS  PubMed  Google Scholar 

  114. Pierucci D, Cicconi S, Bonini P, Ferrelli F, Pastore D, Matteucci C, Marselli L, Marchetti P, Ris F, Halban P, Oberholzer J, Federici M, Cozzolino F, Lauro R, Borboni P, Marlier LN (2001) NGF-withdrawal induces apoptosis in pancreatic beta cells in vitro. Diabetologia 44:1281–1295

    Article  CAS  PubMed  Google Scholar 

  115. Raile K, Klammt J, Garten A, Laue S, Blüher M, Kralisch S, Klöting N, Kiess W (2006) Glucose regulates expression of the nerve growth factor (NGF) receptors TrkA and p75NTR in rat islets and INS-1E beta-cells. Regul Pept 135:30–38

    Article  CAS  PubMed  Google Scholar 

  116. Sposato V, Manni L, Chaldakov GN, Aloe L (2007) Streptozotocin-induced diabetes is associated with changes in NGF levels in pancreas and brain. Arch Ital Biol 145:87–97

    CAS  PubMed  Google Scholar 

  117. Barcelona PF, Sitaras N, Galan A, Esquiva G, Jmaeff S, Jian Y, Sarunic MV, Cuenca N, Sapieha P, Saragovi HU (2016) p75NTR and its ligand proNGF activate paracrine mechanisms etiological to the vascular, inflammatory, and neurodegenerative pathologies of diabetic retinopathy. J Neurosci 36:8826–8841

    Article  CAS  PubMed  Google Scholar 

  118. Tuveri MA, Passiu G, Mathieu A, Aloe L (1993) Nerve growth factor and mast cell distribution in the skin of patients with systemic sclerosis. Clin Exp Rheumatol 11:319–322

    CAS  PubMed  Google Scholar 

  119. Aloe L, Tuveri MA, Levi-Montalcini R (1992) Nerve growth factor and distribution of mast cells in the synovium of adult rats. Clin Exp Rheumatol 10:203–204

    CAS  PubMed  Google Scholar 

  120. Bonini S, Lambiase A, Bonini S, Angelucci F, Magrini L, Manni L, Aloe L (1996) Circulating nerve growth factor levels are increased in humans with allergic diseases and asthma. Proc Natl Acad Sci U S A 93:10955–10960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Quarcoo D, Schulte-Herbrüggen O, Lommatzsch M, Schierhorn K, Hoyle GW, Renz H, Braun A (2004) Nerve growth factor induces increased airway inflammation via a neuropeptide-dependent mechanism in a transgenic animal model of allergic airway inflammation. Clin Exp Allergy 34:1146–1151

    Article  CAS  PubMed  Google Scholar 

  122. di Mola FF, Friess H, Zhu ZW, Koliopanos A, Bley T, Di Sebastiano P, Innocenti P, Zimmermann A, Büchler MW (2000) Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut 46:670–678

    Article  PubMed  Google Scholar 

  123. Kobayashi H, Yamataka A, Fujimoto T, Lane GJ, Miyano T (1999) Mast cells and gut nerve development: implications for Hirschsprung’s disease and intestinal neuronal dysplasia. J Pediatr Surg 34:543–548

    Article  CAS  PubMed  Google Scholar 

  124. Garaci E, Caroleo MC, Aloe L, Aquaro S, Piacentini M, Costa N, Amendola A, Micera A, Caliò R, Perno CF, Levi-Montalcini R (1999) Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. Proc Natl Acad Sci U S A 96:14013–14018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Simone MD, De Santis S, Vigneti E, Papa G, Amadori S, Aloe L (1999) Nerve growth factor: a survey of activity on immune and hematopoietic cells. Hematol Oncol 17:1–10

    Article  CAS  PubMed  Google Scholar 

  126. Kelleher JH, Tewari D, McMahon SB (2017) Neurotrophic factors and their inhibitors in chronic pain treatment. Neurobiol Dis 97(Pt B):127–138

    Article  CAS  PubMed  Google Scholar 

  127. Woolf CJ, Safieh-Garabedian B, Ma QP, Crilly P, Winter J (1994) Nerve growth factor contributes to the generation of inflammatory sensory hypersensibility. Neuroscience 62:327–331

    Article  CAS  PubMed  Google Scholar 

  128. Khodorova A, Nicol GD, Strichartz G (2017) The TrkA receptor mediates experimental thermal hyperalgesia produced by nerve growth factor: modulation by the p75 neurotrophin receptor. Neuroscience 340:384–397

    Article  CAS  PubMed  Google Scholar 

  129. Lewin GR, Lechner SG, Smith ES (2014) Nerve growth factor and nociception: from experimental embryology to new analgesic therapy. Handb Exp Pharmacol 220:251–282

    Article  CAS  PubMed  Google Scholar 

  130. Michael GJ, Averill S, Nitkunan A, Rattray M, Bennett DL, Yan Q, Priestley JV (1997) Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J Neurosci 17:8476–8490

    CAS  PubMed  Google Scholar 

  131. Shu XQ, Llinas A, Mendell LM (1999) Effects of TrkB and trkC neurotrophin receptor agonists on thermal nociception: a behavioural and electrophysiological study. Pain 80:463–470

    Article  CAS  PubMed  Google Scholar 

  132. Carroll P, Lewin GR, Koltzenburg M, Toyka KV, Thoenen H (1998) A role for BDNF in mechanosensation. Nat Neurosci 1:4–6

    Article  Google Scholar 

  133. Skaper SD (2017) Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 151(1):1–15. https://doi.org/10.1111/imm.12717

    Article  CAS  PubMed  Google Scholar 

  134. Hefti F (1986) Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transactions. J Neurosci 6:2155–2162

    CAS  PubMed  Google Scholar 

  135. Williams LR, Varon S, Peterson GM, Wictorin K, Fischer W, Bjorklund A, Gage FH (1986) Continuous infusion of nerve growth factor prevents basal forebrain neuronal death after fimbria fornix transaction. Proc Natl Acad Sci U S A 83:9231–9235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Déglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  CAS  PubMed  Google Scholar 

  137. Yasuda T, Mochizuki H (2010) Use of growth factors for the treatment of Parkinson’s disease. Expert Rev Neurother 10:915–924

    Article  CAS  PubMed  Google Scholar 

  138. Domanskyi A, Saarma M, Airavaara M (2015) Prospects of neurotrophic factors for Parkinson’s disease: comparison of protein and gene therapy. Hum Gene Ther 26:550–559

    Article  CAS  PubMed  Google Scholar 

  139. Podulso JF, Curran GL, Gill JS (1998) Putrescine-modified nerve growth factor: bioactivity, plasma pharmacokinetics, blood-brain/nerve barrier permeability, and nervous system biodistribution. J Neurochem 71:1651–1660

    Google Scholar 

  140. Wu D, Pardridge WM (1999) Neuroprotection with noninvasive neurotrophin delivery to the brain. Proc Natl Acad Sci U S A 96:254–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang Y, Pardridge WM (2001) Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke 32:1378–1384

    Article  CAS  PubMed  Google Scholar 

  142. Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, Davidson BL, Bohn MC (1997) Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 275:838–841

    Article  CAS  PubMed  Google Scholar 

  143. Zhou L, Baumgartner BJ, Hill-Felberg SJ, McGowen LR, Shine HD (2003) Neurotrophin-3 expressed in situ induces axonal plasticity in the adult injured spinal cord. J Neurosci 23:1424–1431

    CAS  PubMed  Google Scholar 

  144. Blesch A, Yang H, Weidner N, Hoang A, Otero D (2004) Axonal responses to cellularly delivered NT-4/5 after spinal cord injury. Mol Cell Neurosci 27:190–201

    Article  CAS  PubMed  Google Scholar 

  145. Butenschön J, Zimmermann T, Schmarowski N, Nitsch R, Fackelmeier B, Friedemann K, Radyushkin K, Baumgart J, Lutz B, Leschik J (2016) PSA-NCAM positive neural progenitors stably expressing BDNF promote functional recovery in a mouse model of spinal cord injury. Stem Cell Res Ther 7:11. https://doi.org/10.1186/s13287-015-0268-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Tuszynski MH, Thal L, Pay M, Salmon DP, HS U, Bakay R, Patel P, Blesch A, Vahlsing HL, Ho G, Tong G, Potkin SG, Fallon J, Hansen L, Mufson EJ, Kordower JH, Gall C, Conner J (2005) A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 11:551–555

    Article  CAS  PubMed  Google Scholar 

  147. Tuszynski MH, Yang JH, Barba D, HS U, Bakay RA, Pay MM, Masliah E, Conner JM, Kobalka P, Roy S, Nagahara AH (2015) Nerve growth factor gene therapy: activation of neuronal responses in Alzheimer disease. JAMA Neurol 72:1139–1147

    Article  PubMed  PubMed Central  Google Scholar 

  148. Qu HY, Zhang T, Li XL, Zhou JP, Zhao BQ, Li Q, Sun MJ (2008) Transducible P11-CNTF rescues the learning and memory impairments induced by amyloid-beta peptide in mice. Eur J Pharmacol 594:93–100

    Article  CAS  PubMed  Google Scholar 

  149. Garcia P, Youssef I, Utvik JK, Florent-Béchard S, Barthélémy V, Malaplate-Armand C, Kriem B, Stenger C, Koziel V, Olivier JL, Escanye MC, Hanse M, Allouche A, Desbène C, Yen FT, Bjerkvig R, Oster T, Niclou SP, Pillot T (2010) Ciliary neurotrophic factor cell-based delivery prevents synaptic impairment and improves memory in mouse models of Alzheimer’s disease. J Neurosci 30:7516–7527

    Article  CAS  PubMed  Google Scholar 

  150. Brewster WJ, Fernyhough P, Diemel LT, Mohiuddin L, Tomlinson RR (1994) Diabetic neuropathy, nerve growth factor and other neurotrophic factors. Trends Neurosci 17:321–325

    Article  CAS  PubMed  Google Scholar 

  151. Apfel SC (2002) Nerve growth factor for the treatment of diabetic neuropathy: what went wrong, what went right, and what does the future hold? Int Rev Neurobiol 50:393–413

    Article  CAS  PubMed  Google Scholar 

  152. Apfel SC, Kessler JA, Adornato BT, Litchy WJ, Sanders C, Rask CA (1998) Recombinant human nerve growth factor in the treatment of diabetic polyneuropathy. NGF Study Group. Neurology 51:695–702

    Article  CAS  PubMed  Google Scholar 

  153. McArthur JC, Yiannoutsos C, Simpson DM, Adornato BT, Singer EJ, Hollander H, Marra C, Rubin M, Cohen BA, Tucker T, Navia BA, Schifitto G, Katzenstein D, Rask C, Zaborski L, Smith ME, Shriver S, Millar L, Clifford DB, Karalnik IJ (2000) A phase II trial of nerve growth factor for sensory neuropathy associated with HIV infection. Neurology 54:1080–1088

    Article  CAS  PubMed  Google Scholar 

  154. Djouhri L (2016) PG110, a humanized anti-NGF antibody, reverses established pain hypersensitivity in persistent inflammatory pain, but not peripheral neuropathic pain, rat models. Pain Med 17:2082–2094

    Article  PubMed  Google Scholar 

  155. Tiseo PJ, Kivitz AJ, Ervin E, Haoboa R, Mellis SJ (2014) Fasinumab (REGN475), an antibody against nerve growth factor for the treatment of pain: results from a double-blind, placebo-controlled exploratory study in osteoarthritis of the knee. Pain 155:1245–1252

    Article  CAS  PubMed  Google Scholar 

  156. Hirose M, Kuroda Y, Murata E (2016) NGF/TrkA signaling as a therapeutic target for pain. Pain Pract 16:175–182

    Article  PubMed  Google Scholar 

  157. Chang DS, Hsu E, Hottinger DG, Cohen SP (2016) Anti-nerve growth factor in pain management: current evidence. J Pain Res 9:373–383

    PubMed  PubMed Central  Google Scholar 

  158. Mullard A (2015) Drug developers reboot anti-NGF pain programmes. Nat Rev Drug Discov 14:297–298

    Article  CAS  PubMed  Google Scholar 

  159. Bannwarth B, Kostine M (2014) Targeting nerve growth factor (NGF) for pain management: what does the future hold for NGF antagonists? Drugs 74:619–626

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Skaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Skaper, S.D. (2018). Neurotrophic Factors: An Overview. In: Skaper, S. (eds) Neurotrophic Factors. Methods in Molecular Biology, vol 1727. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7571-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7571-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7570-9

  • Online ISBN: 978-1-4939-7571-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics