Skip to main content

Neutralizing Antibodies Against Adeno-Associated Virus (AAV): Measurement and Influence on Retinal Gene Delivery

  • Protocol
  • First Online:
Retinal Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1715))

Abstract

Adeno-associated viral vectors have become widely used in the clinic for retinal gene therapy. Thanks to AAVs impeccable safety profile and positive functional outcomes in its clinical application, interest in retinal gene therapy has increased exponentially over the past decade. Although early clinical trials have shown there is little influence of neutralizing antibodies on the performance of AAV when vector is administered into the subretinal space, recent findings suggest neutralizing antibodies may play a role when AAV is delivered via the intravitreal route. These findings highlight the importance of microenvironment on gene delivery and stress the need for a versatile assay to screen subjects for the presence of AAV-neutralizing antibodies. Measuring NAb titers against AAV prior and after gene therapy will help us better understand the impact of preexisting immunity on gene transfer, especially when the vector is administered intravitreally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mingozzi F, High KA (2007) Immune responses to AAV in clinical trials. Curr Gene Ther 7:316–724

    Article  CAS  PubMed  Google Scholar 

  2. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med 358:2240–2248. https://doi.org/10.1056/NEJMoa0802315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bainbridge JWB, Smith AJ, Barker SS et al (2008) Effect of gene therapy on visual function in Leber’s congenital amaurosis. N Engl J Med 358:2231–2239. https://doi.org/10.1056/NEJMoa0802268

    Article  CAS  PubMed  Google Scholar 

  4. Cideciyan AV, Aleman TS, Boye SL et al (2008) Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci U S A 105:15112–15117. https://doi.org/10.1073/pnas.0807027105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. MacLaren RE, Groppe M, Barnard AR et al (2014) Retinal gene therapy in patients with choroideremia: initial findings from a phase 1/2 clinical trial. Lancet 383:1129–1137. https://doi.org/10.1016/S0140-6736(13)62117-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Li Q, Miller R, Han P-Y et al (2008) Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis 14:1760–1769

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Amado D, Mingozzi F, Hui D et al (2010) Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2:21ra16. https://doi.org/10.1126/scitranslmed.3000659

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bennett J, Wellman J, Marshall KA et al (2016) Safety and durability of effect of contralateral-eye administration of AAV2 gene therapy in patients with childhood-onset blindness caused by RPE65 mutations: a follow-on phase 1 trial. Lancet 388:661–672. https://doi.org/10.1016/S0140-6736(16)30371-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cwerman-Thibault H, Augustin S, Ellouze S et al (2014) Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol 337:193–206. https://doi.org/10.1016/j.crvi.2013.11.011

    Article  PubMed  Google Scholar 

  10. Byrne LC, Oztürk BE, Lee T et al (2014) Retinoschisin gene therapy in photoreceptors, Müller glia or all retinal cells in the Rs1h−/− mouse. Gene Ther 21:585–592. https://doi.org/10.1038/gt.2014.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park TK, Wu Z, Kjellstrom S et al (2009) Intravitreal delivery of AAV8 retinoschisin results in cell type-specific gene expression and retinal rescue in the Rs1-KO mouse. Gene Ther 16:916–926. https://doi.org/10.1038/gt.2009.61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kotterman MA, Yin L, Strazzeri JM et al (2014) Antibody neutralization poses a barrier to intravitreal adeno-associated viral vector gene delivery to non-human primates. Gene Ther 22:116–126. https://doi.org/10.1038/gt.2014.115

    Article  PubMed  PubMed Central  Google Scholar 

  13. Maclachlan TK, Lukason M, Collins M et al (2011) Preclinical safety evaluation of AAV2-sFLT01- a gene therapy for age-related macular degeneration. Mol Ther 19:326–334. https://doi.org/10.1038/mt.2010.258

    Article  CAS  PubMed  Google Scholar 

  14. Maguire AM, High KA, Auricchio A et al (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605. https://doi.org/10.1016/S0140-6736(09)61836-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Testa F, Maguire AM, Rossi S et al (2013) Three-year follow-up after unilateral subretinal delivery of adeno-associated virus in patients with Leber congenital amaurosis type 2. Ophthalmology 120:1283–1291. https://doi.org/10.1016/j.ophtha.2012.11.048

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bennett J, Ashtari M, Wellman J et al (2012) AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med 4:120ra15. https://doi.org/10.1126/scitranslmed.3002865

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bainbridge JWB, Mehat MS, Sundaram V et al (2015) Long-term effect of gene therapy on Leber’s congenital amaurosis. N Engl J Med 372:1887–1897. https://doi.org/10.1056/NEJMoa1414221

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rakoczy EP, Lai CM, Magno AL et al (2015) Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet 386:2395–2403. https://doi.org/10.1016/S0140-6736(15)00345-1

    Article  CAS  PubMed  Google Scholar 

  19. Constable IJ, Pierce CM, Lai CM et al (2016) Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMed 14:168–175. https://doi.org/10.1016/j.ebiom.2016.11.016

    Article  Google Scholar 

  20. Hauswirth WW, Aleman TS, Kaushal S et al (2008) Treatment of Leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 19:979–990. https://doi.org/10.1089/hum.2008.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jacobson SG, Cideciyan AV, Ratnakaram R et al (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in fifteen children and adults followed up to three years. Arch Ophthalmol 130:9–24. https://doi.org/10.1001/archophthalmol.2011.298.Gene

    Article  CAS  PubMed  Google Scholar 

  22. Cideciyan AV, Hauswirth WW, Aleman TS et al (2009) Human RPE65 gene therapy for Leber congenital amaurosis: persistence of early visual improvements and safety at 1 year. Hum Gene Ther 20:999–1004. https://doi.org/10.1089/hum.2009.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ghazi NG, Abboud EB, Nowilaty SR et al (2016) Treatment of retinitis pigmentosa due to MERTK mutations by ocular subretinal injection of adeno-associated virus gene vector: results of a phase I trial. Hum Genet 135:327–343. https://doi.org/10.1007/s00439-016-1637-y

    Article  CAS  PubMed  Google Scholar 

  24. Vandenberghe LH, Bell P, Maguire AM et al (2011) Dosage thresholds for AAV2 and AAV8 photoreceptor gene therapy in monkey. Sci Transl Med:3, 88ra54. https://doi.org/10.1126/scitranslmed.3002103

  25. Jacobson SG, Boye SL, Aleman TS et al (2006) Safety in nonhuman primates of ocular AAV2-RPE65, a candidate treatment for blindness in Leber congenital amaurosis. Hum Gene Ther 17:845–858. https://doi.org/10.1089/hum.2006.17.845

    Article  CAS  PubMed  Google Scholar 

  26. Boye SE, Alexander JJ, Boye SL et al (2012) The human rhodopsin kinase promoter in an AAV5 vector confers rod- and cone-specific expression in the primate retina. Hum Gene Ther 23:1101–1115. https://doi.org/10.1089/hum.2012.125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Boyd RF, Boye SL, Conlon TJ et al (2016) Reduced retinal transduction and enhanced transgene-directed immunogenicity with intravitreal delivery of rAAV following posterior vitrectomy in dogs. Gene Ther 23:548–556. https://doi.org/10.1038/gt.2016.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ramachandran P, Lee V, Wei Z et al (2016) Evaluation of dose and safety of AAV7m8 and AAV8BP2 in the non-human primate retina. Hum Gene Ther. https://doi.org/10.1089/hum.2016.111

  29. Wang M, Sun J, Crosby A et al (2016) Direct interaction of human serum proteins with AAV virions to enhance AAV transduction: immediate impact on clinical applications. Gene Ther. https://doi.org/10.1038/gt.2016.75

  30. Zhong L, Li B, Mah CS et al (2008) Next generation of adeno-associated virus 2 vectors: point mutations in tyrosines lead to high-efficiency transduction at lower doses. Proc Natl Acad Sci U S A 105:7827–7832. https://doi.org/10.1073/pnas.0802866105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Petrs-silva H, Dinculescu A, Li Q et al (2011) Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 19:293–301. https://doi.org/10.1038/mt.2010.234

    Article  CAS  PubMed  Google Scholar 

  32. Dalkara D, Byrne LLC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra76. https://doi.org/10.1126/scitranslmed.3005708

    Article  PubMed  Google Scholar 

  33. Hurlbut GD, Ziegler RJ, Nietupski JB et al (2010) Preexisting immunity and low expression in primates highlight translational challenges for liver-directed AAV8-mediated gene therapy. Mol Ther 18:1983–1994. https://doi.org/10.1038/mt.2010.175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Calcedo R, Wilson JM (2013) Humoral immune response to AAV. Front Immunol 4:341. https://doi.org/10.3389/fimmu.2013.00341

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lock M, McGorray S, Auricchio A et al (2010) Characterization of a recombinant adeno-associated virus type 2 reference standard material. Hum Gene Ther 21:1273–1285. https://doi.org/10.1089/hum.2009.223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang M, Crosby A, Hastie E et al (2015) Prediction of adeno-associated virus neutralizing antibody activity for clinical application. Gene Ther 22:984–992. https://doi.org/10.1038/gt.2015.69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang L, Calcedo R, Bell P et al (2011) Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther 22:1389–1401. https://doi.org/10.1089/hum.2011.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz Dalkara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Desrosiers, M., Dalkara, D. (2018). Neutralizing Antibodies Against Adeno-Associated Virus (AAV): Measurement and Influence on Retinal Gene Delivery. In: Boon, C., Wijnholds, J. (eds) Retinal Gene Therapy. Methods in Molecular Biology, vol 1715. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7522-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7522-8_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7521-1

  • Online ISBN: 978-1-4939-7522-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics