Skip to main content

Epigenetics and Preeclampsia: Programming of Future Outcomes

  • Protocol
  • First Online:
Preeclampsia

Abstract

Pregnancy is known to induce rapid, progressive, and substantial changes to the cardiovascular system, ultimately facilitating successful pregnancy outcomes. Women who develop hypertensive disorders during pregnancy are considered to have “failed” the cardiovascular stress test of pregnancy and likely represent a subpopulation with inadequate cardiovascular accommodation. Preeclampsia is a serious complication with a myriad of manifestations in both mother and offspring. This pregnancy syndrome is a polygenic disease and has now been linked to a greater incidence of cardiovascular disease. Moreover, offsprings born to preeclamptic mothers exhibit an elevated risk of cardiovascular disease, stroke, and mental disorders during adulthood. This suggests that preeclampsia not only exposes the mother and the fetus to complications during pregnancy but also programs chronic diseases during adulthood in the offspring. The etiology of preeclampsia remains unknown, with various theories being suggested to explain its origin. It is primarily thought to be associated with poor placentation and entails excessive maternal inflammation and endothelial dysfunction. It is well established now that the maternal immune system and the placenta are involved in a highly choreographed cross talk that underlies adequate spiral artery remodeling required for uteroplacental perfusion and free flow of nutrients to the fetus. Although it is not clear whether immunological alterations occur early during pregnancy, studies have proposed that dysregulated systemic and placental immunity contribute to impaired angiogenesis and the onset of preeclampsia. Recently emerged strong evidence suggests a potential link among epigenetics, microRNAs (miRNAs), and pregnancy complications. This chapter will focus on important aspects of epigenetics, immunological aspects, and cardiovascular and vascular remodeling of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Duley L (2009) The global impact of pre-eclampsia and eclampsia. Semin Perinatol 33:130–137

    Article  Google Scholar 

  2. Laresgoiti-Servitje E, Gomez-Lopez N (2012) The pathophysiology of preeclampsia involves altered levels of angiogenic factors promoted by hypoxia and autoantibody-mediated mechanisms. Biol Reprod 87:36–36

    Article  Google Scholar 

  3. Redman CW, Sargent IL (2010) Immunology of pre-eclampsia. Am J Reprod Immunol 63:534–543

    Article  CAS  Google Scholar 

  4. Silasi M, Cohen B, Karumanchi SA, Rana S (2010) Abnormal placentation, angiogenic factors, and the pathogenesis of preeclampsia. Obstet Gynecol Clin N Am 37:239–253

    Article  Google Scholar 

  5. Wang JX, Knottnerus AM, Schuit G, Norman RJ, Chan A, Dekker GA (2002) Surgically obtained sperm, and risk of gestational hypertension and pre-eclampsia. Lancet 359:673–674

    Article  Google Scholar 

  6. Goldman-Wohl DS, Yagel S (2007) Examination of distinct fetal and maternal molecular pathways suggests a mechanism for the development of preeclampsia. J Reprod Immunol 76:54–60

    Article  CAS  Google Scholar 

  7. Chaddha V, Viero S, Huppertz B, Kingdom J (2004) Developmental biology of the placenta and the origins of placental insufficiency. Semin Fetal Neonatal Med 9:357–369

    Article  Google Scholar 

  8. Duckitt K, Harrington D (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330:565

    Article  Google Scholar 

  9. Bell CG, Beck S (2010) The epigenomic interface between genome and environment in common complex diseases. Brief Funct Genomics 9:477–485

    Article  CAS  Google Scholar 

  10. Robins JC, Marsit CJ, Padbury JF, Sharma SS (2011) Endocrine disruptors, environmental oxygen, epigenetics and pregnancy. Front Biosci (Elite Ed) 3:690–700

    Google Scholar 

  11. Choudhury M, Friedman JE (2012) Epigenetics and microRNAs in preeclampsia. Clin Exp Hypertens 34:334–341

    Article  CAS  Google Scholar 

  12. Jiménez-Chillarón JC, Díaz R, Martínez D, Pentinat T, Ramón-Krauel M, Ribó S, Plösch T (2012) The role of nutrition on epigenetic modifications and their implications on health. Biochimie 94:2242–2263

    Article  Google Scholar 

  13. Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20:282–289

    Article  CAS  Google Scholar 

  14. Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20:63–68

    Article  CAS  Google Scholar 

  15. Nelissen EC, van Montfoort AP, Dumoulin JC, Evers JL (2011) Epigenetics and the placenta. Hum Reprod Update 17:397–417

    Article  CAS  Google Scholar 

  16. Orozco LD, Rubbi L, Martin LJ, Fang F, Hormozdiari F, Che N, Smith AD, Lusis AJ, Pellegrini M (2014) Intergenerational genomic DNA methylation patterns in mouse hybrid strains. Genome Biol 15:R68

    Article  Google Scholar 

  17. Nissenbaum J, Bar-Nur O, Ben-David E, Benvenisty N (2013) Global indiscriminate methylation in cell-specific gene promoters following reprogramming into human induced pluripotent stem cells. Stem Cell Rep 1:509–517

    Article  CAS  Google Scholar 

  18. Hu W, Weng X, Dong M, Liu Y, Li W, Huang H (2014) Alteration in methylation level at 11b-hydroxysteroid dehydrogenase type 2 gene promoter in infants born to preeclamptic women. BMC Genet 15:96

    Article  Google Scholar 

  19. He J, Zhang A, Fang M, Fang R, Ge J, Jiang Y, Zhang H, Han C, Ye X, Yu D, Huang H, Liu Y et al (2013) Methylation levels at IGF2 and GNAS DMRs in infants born to preeclamptic pregnancies. BMC Genomics 14:472

    Article  CAS  Google Scholar 

  20. Aufdenblatten M, Baumann M, Raio L, Dick B, Frey BM, Schneider H, Surbek D, Hocher B, Mohaupt MG (2009) Prematurity is related to high placental cortisol in preeclampsia. Pediatr Res 65:198–202

    Article  CAS  Google Scholar 

  21. Bourque DK, Avila L, Peñaherrera M, von Dadelszen P, Robinson WP (2010) Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta 31:197–202

    Article  CAS  Google Scholar 

  22. Ching T, Ha J, Song M-A, Tiirikainen M, Molnar J, Berry MJ, Towner D, Garmire LX (2015) Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia. Clin Epigenetics 7:21

    Article  Google Scholar 

  23. Stojanovska V, Scherjon SA, Plösch T (2016) Preeclampsia as modulator of offspring health. Biol Reprod 94:53

    Google Scholar 

  24. Reddington JP, Perricone SM, Nestor CE, Reichmann J, Youngson NA, Suzuki M, Reinhardt D, Dunican DS, Prendergast JG, Mjoseng H, Ramsahoye BH, Whitelaw E et al (2013) Redistribution of H3K27me3 upon DNA hypomethylation results in de-repression of Polycomb target genes. Genome Biol 14:R25

    Article  Google Scholar 

  25. Li Y, Zhang Y, Li S, Lu J, Chen J, Wang Y, Li Y, Xu J, Li X (2015) Genome-wide DNA methylome analysis reveals novel epigenetically dysregulated non-coding RNAs in humanbreast cancer. Sci Rep 5:8790

    Google Scholar 

  26. Bellamy L, Casas JP, Hingorani AD, Williams DJ (2007) Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335:974–977

    Article  Google Scholar 

  27. McDonald SD, Malinowski A, Zhou Q, Yusuf S, Devereaux PJ (2008) Cardiovascular sequelae of preeclampsia/eclampsia: a systematic review and meta-analyses. Am Heart J 156:918–930

    Article  Google Scholar 

  28. Crispi F, Domínguez C, Llurba E, Martín- Gallán P, Cabero L, Gratacós E (2006) Placental angiogenic growth factors and uterine artery Doppler findings for characterization of different subsets in preeclampsia and in isolated intra-uterine growth restriction. Am J Obstet Gynecol 195:201–207

    Article  CAS  Google Scholar 

  29. Crispi F, Llurba E, Domínguez C, Martín- Gallán P, Cabero L, Gratacós E (2008) Predictive value of angiogenic factors and uterine artery Doppler for early versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet Gynecol 31:303–309

    Article  CAS  Google Scholar 

  30. Huppertz B (2008) Placental origins of pre- eclampsia: challenging the current hypothesis. Hypertension 51:970–975

    Article  CAS  Google Scholar 

  31. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B (2012) Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction. Hypertension 60:437–443

    Article  CAS  Google Scholar 

  32. Manten GT, Sikkema MJ, Voorbij HA, Visser GH, Bruinse HW, Franx A (2007) Risk factors for cardiovascular disease in women with a history of pregnancy complicated by preeclampsia or intrauterine growth restriction. Hypertens Pregnancy 26:39–50

    Article  Google Scholar 

  33. Caruso A, Paradisi G, Ferrazzani S, Lucchese A, Moretti S, Fulghesu AM (1998) Effect of maternal carbohydrate metabolism on fetal growth. Obstet Gynecol 92:8–12

    Article  CAS  Google Scholar 

  34. Hermes W, Tamsma JT, Grootendorst DC, Franx A, van der Post J, van Pampus MG, Bloemenkamp KW, Porath M, Mol BW, de Groot CJ (2013) Cardiovascular risk estimation in women with a history of hypertensive pregnancy disorders at term: a longitudinal follow-up study. BMC Pregnancy Childbirth 13:126

    Article  Google Scholar 

  35. Goynumer G, Yucel N, Adali E, Tan T, Baskent E, Karadag C (2013) Vascular risk in women with a history of severe preeclampsia. J Clin Ultrasound 41:145–150

    Article  Google Scholar 

  36. Yuan LJ, Xue D, Duan YY, Cao TS, Yang HG, Zhou N (2013) Carotid intima media thickness and arterial stiffness in pre-eclampsia by analysis with a radiofrequency ultrasound technique. Ultrasound Obstet Gynecol 42:644–652

    Article  CAS  Google Scholar 

  37. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS, American Society of Echocardiography Carotid Intima-Media Thickness Task Force (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21:93–111

    Article  Google Scholar 

  38. Laurent S, Boutouyrie P (2007) Recent advances in arterial stiffness and wave reflection in human hypertension. Hypertension 49:1202–1206

    Article  CAS  Google Scholar 

  39. Dipti A, Soucy Z, Surana A, Chandra S (2012) Role of inferior vena cava diameter in assessment of volume status: a metaanalysis. Am J Emerg Med 30:1414–1419

    Article  Google Scholar 

  40. Stergiotou I, Crispi F, Valenzuela-Alcaraz B, Bijnens B, Gratacos E (2013) Patterns of maternal vascular remodeling and responsiveness in early versus late-onset preeclampsia. Am J Obstet Gynecol 209:558.e1–558.e14

    Article  Google Scholar 

  41. Bots ML, Hofman A, Grobbee DE (1997) Increased common carotid intima-media thickness: adaptive response or a reflection of atherosclerosis? Findings from the Rotterdam study. Stroke 28:2442–2447

    Article  CAS  Google Scholar 

  42. Tihtonen KM, Kööbi T, Uotila JT (2006) Arterial stiffness in preeclamptic and chronic hypertensive pregnancies. Eur J Obstet Gynecol Reprod Biol 128:180–186

    Article  Google Scholar 

  43. Gyselaers W (2008) Hemodynamics of the maternal venous compartment: a new area to explore in obstetric ultrasound imaging. Ultrasound Obstet Gynecol 32:716–717

    Article  CAS  Google Scholar 

  44. Mongraw-Chaffin ML, Cirillo PM, Cohn BA (2010) Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension 56:166–171

    Article  CAS  Google Scholar 

  45. Yinon Y, Kingdom JC, Odutayo A, Moineddin R, Drewlo S, Lai V, Cherney DZ, Hladunewich MA (2010) Vascular dysfunction in women with a history of preeclampsia and intrauterine growth restriction: insights into future vascular risk. Circulation 122:1846–1853

    Article  CAS  Google Scholar 

  46. Laurent S, Girerd X, Mourad JJ et al (1994) Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension. Arterioscler Thromb 14:1223–1231

    Article  CAS  Google Scholar 

  47. Melchiorre K, Sutherland GR, Baltabaeva A, Liberati M, Thilaganathan B (2011) Maternal cardiac dysfunction and remodeling in women with preeclampsia at term. Hypertension 57:85–93

    Article  CAS  Google Scholar 

  48. Cheng SB, Sharma S (2016) Preeclampsia and health risks later in life: an immunological link. Seminars in immunopathology. Semin Immunopathol 48:669–708

    Google Scholar 

  49. Novakovic B, Saffery R (2012) The ever growing complexity of placental epigenetics – role in adverse pregnancy outcomes and fetal programming. Placenta 33:959–970

    Article  CAS  Google Scholar 

  50. Martin E, Ray PD, Smeester L, Grace MR, Boggess K, Fry RC (2015) Epigenetics and preeclampsia: defining functional epimutations in the preeclamptic placenta related to the TGF-β pathway. PLoS One 10(10):1–14

    Google Scholar 

  51. Chazara O, Xiong S, Moffett A (2011) Maternal KIR and fetal HLA-C: a fine balance. J Leukoc Biol 90:703–716

    Article  CAS  Google Scholar 

  52. King A (2000) Uterine leukocytes and decidualization. Hum Reprod Update 6:28–36

    Article  CAS  Google Scholar 

  53. Nevers T, Kalkunte S, Sharma S (2011) Uterine regulatory T cells, IL-10 and hypertension. Am J Reprod Immunol 66 Suppl 1:88–92

    Article  Google Scholar 

  54. Norris W, Nevers T, Sharma S, Kalkunte S (2011) Review: HCG, preeclampsia and regulatory T cells. Placenta 32 Suppl 2:S182–S185

    Article  Google Scholar 

  55. Sargent IL, Borzychowski AM, Redman CW (2006) NK cells and human pregnancy – an inflammatory view. Trends Immunol 27:399–404

    Article  CAS  Google Scholar 

  56. Melchiorre K, Sharma R, Thilaganathan B (2014) Cardiovascular implications in preeclampsia: an overview. Circulation 130:703–714

    Article  Google Scholar 

  57. Valensise H, Lo Presti D, Gagliardi G, Tiralongo GM, Pisani I, Novelli GP, Vasapollo B (2016) Persistent maternal cardiac dysfunction after preeclampsia identifies patients at risk for recurrent preeclampsia. Hypertension 67:748–753

    Article  CAS  Google Scholar 

  58. Ghossein-Doha C, Peeters L, Van Heijster S, Van Kuijk S, Spaan J, Delhaas T, Spaanderman M (2013) Hypertension after preeclampsia is preceded by changes in cardiac structure and function. Hypertension 62:382–390

    Article  CAS  Google Scholar 

  59. Ghossein-Doha C, Spaanderman ME, Al Doulah R, Van Kuijk SM, Peeters LL (2016) Maternal cardiac adaptation to subsequent pregnancy in formerly pre-eclamptic women according to recurrence of pre-eclampsia. Ultrasound Obstet Gynecol 47:96–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Araujo Júnior .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Peixoto, A.B., Rolo, L.C., Nardozza, L.M.M., Araujo Júnior, E. (2018). Epigenetics and Preeclampsia: Programming of Future Outcomes. In: Murthi, P., Vaillancourt, C. (eds) Preeclampsia . Methods in Molecular Biology, vol 1710. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7498-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7498-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7497-9

  • Online ISBN: 978-1-4939-7498-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics