Skip to main content

Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design

  • Protocol
  • First Online:
Computational Methods for GPCR Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1705))

Abstract

Recent crystallographic structures of G protein-coupled receptors (GPCRs) have greatly advanced our understanding of the recognition of their diverse agonist and antagonist ligands. We illustrate here how this applies to A2A adenosine receptors (ARs) and to P2Y1 and P2Y12 receptors (P2YRs) for ADP. These X-ray structures have impacted the medicinal chemistry aimed at discovering new ligands for these two receptor families, including receptors that have not yet been crystallized but are closely related to the known structures. In this Chapter, we discuss recent structure-based drug design projects that led to the discovery of: (a) novel A3AR agonists based on a highly rigidified (N)-methanocarba scaffold for the treatment of chronic neuropathic pain and other conditions, (b) fluorescent probes of the ARs and P2Y14R, as chemical tools for structural probing of these GPCRs and for improving assay capabilities, and (c) new more drug-like antagonists of the inflammation-related P2Y14R. We also describe the computationally enabled molecular recognition of positive (for A3AR) and negative (P2Y1R) allosteric modulators that in some cases are shown to be consistent with structure-activity relationship (SAR) data. Thus, computational modeling has become an essential tool for the design of purine receptor ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Santos R, Ursu O, Gaulton A et al (2016) A comprehensive map of molecular drug targets. Nat Rev Drug Discov 16:19–34. https://doi.org/10.1038/nrd.2016.230

    Article  PubMed  Google Scholar 

  2. Mason JS, Bortolato A, Weiss DR et al (2013) High end GPCR design: crafted ligand design and druggability analysis using protein structure, lipophilic hotspots and explicit water networks. In Silico Pharmacol 1:23. https://doi.org/10.1186/2193-9616-1-23

    Article  PubMed Central  Google Scholar 

  3. Tautermann CS (2014) GPCR structures in drug design, emerging opportunities with new structures. Bioorg Med Chem Lett 24:4073–4079. https://doi.org/10.1016/j.bmcl.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  4. Rodríguez D, Ranganathan A, Carlsson J (2015) Discovery of GPCR ligands by molecular docking screening: novel opportunities provided by crystal structures. Curr Top Med Chem 15:2484–2503

    Article  PubMed  Google Scholar 

  5. Kooistra AJ, Vischer HF, McNaught-Flores D et al (2016) Function-specific virtual screening for GPCR ligands using a combined scoring method. Sci Rep 6:28288. https://doi.org/10.1038/srep28288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burnstock G (2016) Short- and long-term (trophic) purinergic signalling. Philos Trans R Soc B Biol Sci 371:20150422. https://doi.org/10.1098/rstb.2015.0422

    Article  Google Scholar 

  7. Cronstein BN, Sitkovsky M (2016) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Rev Rheumatol 13:41–51. https://doi.org/10.1038/nrrheum.2016.178

    Article  PubMed  Google Scholar 

  8. Zimmermann H, Zebisch M, Sträter N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502. https://doi.org/10.1007/s11302-012-9309-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boison D (2013) Adenosine kinase: exploitation for therapeutic gain. Pharmacol Rev 65:906–943. https://doi.org/10.1124/pr.112.006361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Schöneberg T, Hermsdorf T, Engemaier E et al (2007) Structural and functional evolution of the P2Y12-like receptor group. Purinergic Signal 3:255–268. https://doi.org/10.1007/s11302-007-9064-0

    Article  PubMed  PubMed Central  Google Scholar 

  11. Verkhratsky A, Burnstock G (2014) Biology of purinergic signalling: its ancient evolutionary roots, its omnipresence and its multiple functional significance. BioEssays 36:697–705. https://doi.org/10.1002/bies.201400024

    Article  CAS  PubMed  Google Scholar 

  12. Toti KS, Osborne D, Ciancetta A et al (2016) South (S)- and north (N)-methanocarba-7-deazaadenosine analogues as inhibitors of human adenosine kinase. J Med Chem 59:6860–6877. https://doi.org/10.1021/acs.jmedchem.6b00689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tosh DK, Deflorian F, Phan K et al (2012) Structure-guided design of A3 adenosine receptor-selective nucleosides: combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J Med Chem 55:4847–4860. https://doi.org/10.1021/jm300396n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Junker A, Balasubramanian R, Ciancetta A et al (2016) Structure-based design of 3-(4-aryl-1 H −1,2,3-triazol-1-yl)-biphenyl derivatives as P2Y14 receptor antagonists. J Med Chem 59:6149–6168. https://doi.org/10.1021/acs.jmedchem.6b00044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Conroy S, Kindon N, Kellam B, Stocks MJ (2016) Drug-like antagonists of P2Y receptors—from lead identification to drug development. J Med Chem 59:9981–10005. https://doi.org/10.1021/acs.jmedchem.5b01972

    Article  CAS  PubMed  Google Scholar 

  16. Lebon G, Warne T, Edwards PC et al (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525. https://doi.org/10.1038/nature10136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xu F, Wu H, Katritch V et al (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327. https://doi.org/10.1126/science.1202793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lebon G, Edwards PC, Leslie AGW, Tate CG (2015) Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol 87:907–915. https://doi.org/10.1124/mol.114.097360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Glukhova A, Thal DM, Nguyen AT et al (2017) Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell 168:867–877.e13. https://doi.org/10.1016/j.cell.2017.01.042

    Article  CAS  PubMed  Google Scholar 

  20. Jaakola V-P, Griffith MT, Hanson MA et al (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217. https://doi.org/10.1126/science.1164772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Doré AS, Robertson N, Errey JC et al (2011) Structure of the adenosine A2A receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure 19:1283–1293. https://doi.org/10.1016/j.str.2011.06.014

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hino T, Arakawa T, Iwanari H et al (2012) G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody. Nature 482:237–240. https://doi.org/10.1038/nature10750

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu W, Chun E, Thompson AA et al (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236. https://doi.org/10.1126/science.1219218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Segala E, Guo D, Cheng RKY et al (2016) Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength. J Med Chem 59:6470–6479. https://doi.org/10.1021/acs.jmedchem.6b00653

    Article  CAS  PubMed  Google Scholar 

  25. Congreve M, Andrews SP, Doré AS et al (2012) Discovery of 1,2,4-triazine derivatives AS adenosine A2A antagonists using structure based drug design. J Med Chem 55:1898–1903. https://doi.org/10.1021/jm201376w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jacobson KA, Gao ZG (2017) Chapter 11: Allosteric modulators of adenosine, P2Y and P2X receptors. In: Doller D (ed) Allosterism in drug discovery (RSC drug discovery series no. 56), pp 247–270. https://doi.org/10.1039/9781782629276

    Google Scholar 

  27. Carpenter B, Nehmé R, Warne T et al (2016) Structure of the adenosine A2A receptor bound to an engineered G protein. Nature 536:104–107. https://doi.org/10.1038/nature18966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Batyuk A, Galli L, Ishchenko A et al (2016) Native phasing of x-ray free-electron laser data for a G protein-coupled receptor. Sci Adv 2:e1600292–e1600292. https://doi.org/10.1126/sciadv.1600292

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang D, Gao Z-G, Zhang K et al (2015) Two disparate ligand-binding sites in the human P2Y1 receptor. Nature 520:317–321. https://doi.org/10.1038/nature14287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang K, Zhang J, Gao Z-G et al (2014) Structure of the human P2Y12 receptor in complex with an antithrombotic drug. Nature 509:115–118. https://doi.org/10.1038/nature13083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Zhang K, Gao Z-G et al (2014) Agonist-bound structure of the human P2Y12 receptor. Nature 509:119–122. https://doi.org/10.1038/nature13288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jazayeri A, Andrews SP, Marshall FH (2017) Structurally enabled discovery of adenosine A2A receptor antagonists. Chem Rev 117:21–37. https://doi.org/10.1021/acs.chemrev.6b00119

    Article  CAS  PubMed  Google Scholar 

  33. Zou Y, Weis WI, Kobilka BK (2012) N-terminal T4 lysozyme fusion facilitates crystallization of a G protein coupled receptor. PLoS One 7:e46039. https://doi.org/10.1371/journal.pone.0046039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein–coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. https://doi.org/10.1146/annurev-pharmtox-032112-135923

    Article  CAS  PubMed  Google Scholar 

  35. Steyaert J, Kobilka BK (2011) Nanobody stabilization of G protein-coupled receptor conformational states. Curr Opin Struct Biol 21:567–572. https://doi.org/10.1016/j.sbi.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81. https://doi.org/10.1038/nrm3933

    Article  CAS  PubMed  Google Scholar 

  37. Ivanov AA, Barak D, Jacobson KA (2009) Evaluation of homology modeling of G-protein-coupled receptors in light of the A2A adenosine receptor crystallographic structure. J Med Chem 52:3284–3292. https://doi.org/10.1021/jm801533x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jacobson KA (2009) Functionalized congener approach to the design of ligands for G protein-coupled receptors (GPCRs). Bioconjug Chem 20:1816–1835. https://doi.org/10.1021/bc9000596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ballesteros JA, Weinstein H (1995) [19] integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci Elsevier:366–428

    Google Scholar 

  40. Katritch V, Fenalti G, Abola EE et al (2014) Allosteric sodium in class a GPCR signaling. Trends Biochem Sci 39:233–244. https://doi.org/10.1016/j.tibs.2014.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Massink A, Louvel J, Adlere I et al (2016) 5′-substituted Amiloride derivatives as allosteric modulators binding in the sodium ion pocket of the adenosine A2A receptor. J Med Chem 59:4769–4777. https://doi.org/10.1021/acs.jmedchem.6b00142

    Article  CAS  PubMed  Google Scholar 

  42. Higgs C, Beuming T, Sherman W (2010) Hydration site thermodynamics explain SARs for triazolylpurines analogues binding to the A2A receptor. ACS Med Chem Lett 1:160–164. https://doi.org/10.1021/ml100008s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lenselink EB, Beuming T, Sherman W et al (2014) Selecting an optimal number of binding site waters to improve virtual screening enrichments against the adenosine A2A receptor. J Chem Inf Model 54:1737–1746. https://doi.org/10.1021/ci5000455

    Article  CAS  PubMed  Google Scholar 

  44. Magnani F, Serrano-Vega MJ, Shibata Y et al (2016) A mutagenesis and screening strategy to generate optimally thermostabilized membrane proteins for structural studies. Nat Protoc 11:1554–1571. https://doi.org/10.1038/nprot.2016.088

    Article  PubMed  PubMed Central  Google Scholar 

  45. Langmead CJ, Andrews SP, Congreve M et al (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 55:1904–1909. https://doi.org/10.1021/jm201455y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gutiérrez-de-Terán H, Sallander J, Sotelo E (2017) Structure-based rational design of adenosine receptor ligands. Curr Top Med Chem 17:40–58

    Article  PubMed  Google Scholar 

  47. Segala E, Errey JC, Fiez-Vandal C et al (2015) Biosensor-based affinities and binding kinetics of small molecule antagonists to the adenosine A2A receptor reconstituted in HDL like particles. FEBS Lett 589:1399–1405. https://doi.org/10.1016/j.febslet.2015.04.030

    Article  CAS  PubMed  Google Scholar 

  48. Bocquet N, Kohler J, Hug MN et al (2015) Real-time monitoring of binding events on a thermostabilized human A2A receptor embedded in a lipid bilayer by surface plasmon resonance. Biochim Biophys Acta Biomembr 1848:1224–1233. https://doi.org/10.1016/j.bbamem.2015.02.014

    Article  CAS  Google Scholar 

  49. Chen D, Errey JC, Heitman LH et al (2012) Fragment screening of GPCRs using biophysical methods: identification of ligands of the adenosine A2A receptor with novel biological activity. ACS Chem Biol 7:2064–2073. https://doi.org/10.1021/cb300436c

    Article  CAS  PubMed  Google Scholar 

  50. Gao ZG, Kim SK, Biadatti T et al (2002) Structural determinants of A3 adenosine receptor activation: nucleoside ligands at the agonist/antagonist boundary. J Med Chem 45:4471–4484

    Article  CAS  PubMed  Google Scholar 

  51. Toti KS, Moss SM, Paoletta S et al (2014) Synthesis and evaluation of N 6-substituted apioadenosines as potential adenosine A3 receptor modulators. Bioorg Med Chem 22:4257–4268. https://doi.org/10.1016/j.bmc.2014.05.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tosh DK, Ciancetta A, Warnick E et al (2016) Purine (N )-methanocarba nucleoside derivatives lacking an exocyclic amine as selective A3 adenosine receptor agonists. J Med Chem 59:3249–3263. https://doi.org/10.1021/acs.jmedchem.5b01998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gao Z-G, Duong HT, Sonina T et al (2006) Orthogonal activation of the reengineered A3 adenosine receptor (neoceptor) using tailored nucleoside agonists. J Med Chem 49:2689–2702. https://doi.org/10.1021/jm050968b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacobson KA, Ohno M, Duong HT et al (2005) A neoceptor approach to unraveling microscopic interactions between the human A2A adenosine receptor and its agonists. Chem Biol 12:237–247. https://doi.org/10.1016/j.chembiol.2004.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim S-K, Gao Z-G, Jeong LS, Jacobson KA (2006) Docking studies of agonists and antagonists suggest an activation pathway of the A3 adenosine receptor. J Mol Graph Model 25:562–577. https://doi.org/10.1016/j.Jmgm.2006.05.004

    Article  CAS  PubMed  Google Scholar 

  56. Li J, Jonsson AL, Beuming T, Shelley JC, Voth GA (2103) Ligand-dependent activation and deactivation of the human adenosine A2A receptor. J Am Chem Soc 135:8749–−8759. https://doi.org/10.1021/ja404391q

    Article  Google Scholar 

  57. Kim JH, Wess J, van Rhee AM et al (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270:13987–13997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sun B, Bachhawat P, Chu MLH et al (2017) Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket. Proc Natl Acad Sci U S A 114:2066–2071. https://doi.org/10.1073/pnas.1621423114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Paoletta S, Sabbadin D, von Kügelgen I et al (2015) Modeling ligand recognition at the P2Y12 receptor in light of X-ray structural information. J Comput Aided Mol Des 29:737–756. https://doi.org/10.1007/s10822-015-9858-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bach P, Boström J, Brickmann K et al (2013) Synthesis, structure–property relationships and pharmacokinetic evaluation of ethyl 6-aminonicotinate sulfonylureas as antagonists of the P2Y12 receptor. Eur J Med Chem 65:360–375. https://doi.org/10.1016/j.ejmech.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  61. Chao H, Turdi H, Herpin TF et al (2013) Discovery of 2-(Phenoxypyridine)-3-phenylureas as small molecule P2Y1 antagonists. J Med Chem 56:1704–1714. https://doi.org/10.1021/jm301708u

    Article  CAS  PubMed  Google Scholar 

  62. Rosenbaum DM, Zhang C, Lyons JA et al (2011) Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature 469:236–240. https://doi.org/10.1038/nature09665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim S-K, Jacobson KA (2007) Three-dimensional quantitative structure−activity relationship of nucleosides acting AT the A3 adenosine receptor: analysis of binding and relative efficacy. J Chem Inf Model 47:1225–1233. https://doi.org/10.1021/ci600501z

    Article  CAS  Google Scholar 

  64. Deflorian F, Kumar TS, Phan K et al (2012) Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A2A adenosine receptor. J Med Chem 55:538–552. https://doi.org/10.1021/jm201461q

    Article  CAS  PubMed  Google Scholar 

  65. Rodríguez D, Chakraborty S, Warnick E et al (2016) Structure-based screening of uncharted chemical space for atypical adenosine receptor agonists. ACS Chem Biol 11:2763–2772. https://doi.org/10.1021/acschembio.6b00357

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tosh DK, Phan K, Gao Z-G et al (2012) Optimization of adenosine 5′-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem 55:4297–4308. https://doi.org/10.1021/jm300095s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Paoletta S, Tosh DK, Finley A et al (2013) Rational design of sulfonated A3 adenosine receptor-selective nucleosides as pharmacological tools to study chronic neuropathic pain. J Med Chem 56:5949–5963. https://doi.org/10.1021/jm4007966

    Article  CAS  PubMed  Google Scholar 

  68. Jacobson KA, Costanzi S, Paoletta S (2014) Computational studies to predict or explain G protein-coupled receptor polypharmacology. Trends Pharmacol Sci 35:658–663. https://doi.org/10.1016/j.tips.2014.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bacilieri M, Ciancetta A, Paoletta S et al (2013) Revisiting a receptor-based pharmacophore hypothesis for human A2A adenosine receptor antagonists. J Chem Inf Model 53:1620–1637. https://doi.org/10.1021/ci300615u

    Article  CAS  PubMed  Google Scholar 

  70. Moss SM, Jayasekara PS, Paoletta S et al (2014) Structure-based design of reactive nucleosides for site-specific modification of the A2A adenosine receptor. ACS Med Chem Lett 5:1043–1048. https://doi.org/10.1021/ml5002486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Borea PA, Varani K, Vincenzi F et al (2014) The A3 adenosine receptor: history and perspectives. Pharmacol Rev 67:74–102. https://doi.org/10.1124/pr.113.008540

    Article  Google Scholar 

  72. Tosh DK, Paoletta S, Phan K et al (2012) Truncated nucleosides as A3 adenosine receptor ligands: combined 2-arylethynyl and bicyclohexane substitutions. ACS Med Chem Lett 3:596–601. https://doi.org/10.1021/ml300107e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nayak A, Chandra G, Hwang I et al (2014) Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N 6-substituted-(N )-methanocarbanucleosides as A3 adenosine receptor antagonists. J Med Chem 57:1344–1354. https://doi.org/10.1021/jm4015313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kolb P, Phan K, Gao Z-G et al (2012) Limits of ligand selectivity from docking to models: in silico screening for A1 adenosine receptor antagonists. PLoS One 7:e49910. https://doi.org/10.1371/journal.pone.0049910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fishman P, Bar-Yehuda S, Liang BT, Jacobson KA (2012) Pharmacological and therapeutic effects of A3 adenosine receptor agonists. Drug Discov Today 17:359–366. https://doi.org/10.1016/j.drudis.2011.10.007

    Article  CAS  PubMed  Google Scholar 

  76. Janes K, Symons-Liguori A, Jacobson KA, Salvemini D (2016) Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol 173:1253–1267. https://doi.org/10.1111/bph.13446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tosh DK, Paoletta S, Deflorian F et al (2012) Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 55:8075–8090. https://doi.org/10.1021/jm300965a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strachan RT, Sun JP, Rominger DH et al (2014) Divergent transducer-specific molecular efficacies generate biased agonism at a G protein-coupled receptor (GPCR). J Biol Chem 289:14211–14224. https://doi.org/10.1074/jbc.M114.548131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Galandrin S, Onfroy L, Poirot MC et al (2016) Delineating biased ligand efficacy at 7TM receptors from an experimental perspective. Int J Biochem Cell Biol 77:251–263. https://doi.org/10.1016/j.biocel.2016.04.009

    Article  CAS  PubMed  Google Scholar 

  80. Baltos J-A, Paoletta S, Nguyen ATN et al (2016) Structure-activity analysis of biased agonism at the human adenosine A3 receptor. Mol Pharmacol 90:12–22. https://doi.org/10.1124/mol.116.103283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Katritch V, Jaakola V-P, Lane JR et al (2010) Structure-based discovery of novel chemotypes for adenosine A2A receptor antagonists. J Med Chem 53:1799–1809. https://doi.org/10.1021/jm901647p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carlsson J, Yoo L, Gao Z-G et al (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53:3748–3755. https://doi.org/10.1021/jm100240h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kozma E, Gizewski ET, Tosh DK et al (2013) Characterization by flow cytometry of fluorescent, selective agonist probes of the A3 adenosine receptor. Biochem Pharmacol 85:1171–1181. https://doi.org/10.1016/j.bcp.2013.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. el Maatougui A, Azuaje J, González-Gómez M et al (2016) Discovery of potent and highly selective A2B adenosine receptor antagonist chemotypes. J Med Chem 59:1967–1983. https://doi.org/10.1021/acs.jmedchem.5b01586

    Article  PubMed  Google Scholar 

  85. Ranganathan A, Stoddart LA, Hill SJ, Carlsson J (2015) Fragment-based discovery of subtype-selective adenosine receptor ligands from homology models. J Med Chem 58:9578–9590. https://doi.org/10.1021/acs.jmedchem.5b01120

    Article  CAS  PubMed  Google Scholar 

  86. Rodríguez D, Gao Z-G, Moss SM et al (2015) Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J Chem Inf Model 55:550–563. https://doi.org/10.1021/ci500639g

    Article  PubMed  PubMed Central  Google Scholar 

  87. Bharate SB, Singh B, Kachler S et al (2016) Discovery of 7-(prolinol-N-yl)-2-phenylaminothiazolo[5,4-d]pyrimidines as novel non-nucleoside partial agonists for the A2A adenosine receptor: prediction from molecular modeling. J Med Chem 59:5922–5928. https://doi.org/10.1021/acs.jmedchem.6b00552

    Article  CAS  PubMed  Google Scholar 

  88. Louvel J, Guo D, Soethoudt M et al (2015) Structure-kinetics relationships of Capadenoson derivatives as adenosine A1 receptor agonists. Eur J Med Chem 101:681–691. https://doi.org/10.1016/j.ejmech.2015.07.023

    Article  CAS  PubMed  Google Scholar 

  89. Deganutti G, Cuzzolin A, Ciancetta A, Moro S (2015) Understanding allosteric interactions in G protein-coupled receptors using supervised molecular dynamics: a prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorg Med Chem 23:4065–4071. https://doi.org/10.1016/j.bmc.2015.03.039

    Article  CAS  PubMed  Google Scholar 

  90. Wong PC, Watson C, Crain EJ (2016) The P2Y1 receptor antagonist MRS2500 prevents carotid artery thrombosis in cynomolgus monkeys. J Thromb Thrombolysis 41:514–521. https://doi.org/10.1007/s11239-015-1302-7

    Article  CAS  PubMed  Google Scholar 

  91. Conroy S, Kindon N, Kellam B, Stocks MJ (2016) Nucleotides acting at P2Y receptors: connecting structure and function. J Med Chem 59:9981–10005. https://doi.org/10.1021/acs.jmedchem.5b01972

    Article  CAS  PubMed  Google Scholar 

  92. Jacobson KA, Paoletta S, Katritch V et al (2015) Nucleotides acting at P2Y receptors: connecting structure and function. Mol Pharmacol 88:220–230. https://doi.org/10.1124/mol.114.095711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hu CH, Qiao JX, Han Y et al (2014) 2-amino-1,3,4-thiadiazoles in the 7-hydroxy-N-neopentyl spiropiperidine indolinyl series as potent P2Y1 receptor antagonists. Bioorg Med Chem Lett 24:2481–2485. https://doi.org/10.1016/j.bmcl.2014.04.011

  94. Yi F, Sun L, L-j X, Peng Y et al (2017) In silico approach for anti thrombosis drug discovery: P2Y1R structure-based TCMs screening. Front Pharmacol 7:531. https://doi.org/10.3389/fphar.2016.00531

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hoffmann K, Lutz DA, Straßburger J et al (2014) Competitive mode and site of interaction of ticagrelor at the human platelet P2Y12 -receptor. J Thromb Haemost 12:1898–1905. https://doi.org/10.1111/jth.12719

    Article  CAS  PubMed  Google Scholar 

  96. Kiselev E, Balasubramanian R, Uliassi E et al (2015) Design, synthesis, pharmacological characterization of a fluorescent agonist of the P2Y14 receptor. Bioorg Med Chem Lett 25:4733–4739. https://doi.org/10.1016/j.bmcl.2015.08.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gauthier JY, Belley M, Deschênes D et al (2011) The identification of 4,7-disubstituted naphthoic acid derivatives as UDP-competitive antagonists of P2Y14. Bioorg Med Chem Lett 21:2836–2839. https://doi.org/10.1016/j.bmcl.2011.03.081

    Article  CAS  PubMed  Google Scholar 

  98. Barrett MO, Sesma JI, Ball CB et al (2013) A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol Pharmacol 84:41–49. https://doi.org/10.1124/mol.113.085654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kiselev E, Barrett MO, Katritch V et al (2014) Exploring a 2-naphthoic acid template for the structure-based design of P2Y14 receptor antagonist molecular probes. ACS Chem Biol 9:2833–2842. https://doi.org/10.1021/cb500614p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheng RKY, Segala E, Robertson N et al (2017) Structures of human A1 and A2A adenosine receptors with xanthines reveal determinants of selectivity. Structure, 25:1275–1285. https://doi.org/10.1016/j.str.2017.06.012

Download references

Acknowledgments

We acknowledge support from the NIDDK, NIH Intramural Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ciancetta, A., Jacobson, K.A. (2018). Breakthrough in GPCR Crystallography and Its Impact on Computer-Aided Drug Design. In: Heifetz, A. (eds) Computational Methods for GPCR Drug Discovery. Methods in Molecular Biology, vol 1705. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7465-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7465-8_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7464-1

  • Online ISBN: 978-1-4939-7465-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics