Skip to main content

Whole Genome Duplication in Plants: Implications for Evolutionary Analysis

  • Protocol
  • First Online:
Comparative Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1704))

Abstract

The recurrent cycle of whole genome duplication (WGD) followed by massive duplicate gene loss (fractionation) differentiates plant evolutionary history from that of most other phylogenetic domains, where WGD has occurred relatively rarely, even on an evolutionary time scale. We discuss the mechanism of WGD and its biological consequences. We survey the prevalence of WGD in the flowering plants. We outline some of the major kinds of combinatorial optimization problems arising in computational biology for analyzing WGD. Fractionation and its consequences are the subject of mathematical modeling questions and further combinatorial algorithms. A strong connection is made between WGD in phylogenetic context and the theory of gene trees and species trees. We illustrate the analysis of WGD with studies involving a large number of sequenced plant genomes, including grape, the crucifers and other rosids, the asterid tomato, the eudicot Nelumbo nucifera and pineapple, a monocot.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Aury J-M et al (2006) Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia. Nature 444:171–178

    Article  CAS  PubMed  Google Scholar 

  2. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  PubMed  Google Scholar 

  3. Soltis DE et al (2009) Polyploidy and angiosperm diversification. Am J Bot 96:336–348

    Article  PubMed  Google Scholar 

  4. Lokki J, Saura A (1980) Polyploidy in insect evolution. In: Polyploidy. Springer, Boston, pp 277–312

    Chapter  Google Scholar 

  5. Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants. BMC Evol Biol 8:64

    Article  PubMed  PubMed Central  Google Scholar 

  6. Nakatani Y, Takeda H, Kohara Y, Shinichi M (2007) Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res 17:1254–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jaillon O et al (2004) Genome duplication in the teleost fish tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946–957

    Article  PubMed  Google Scholar 

  8. Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19:1404–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mable BK, Alexandrou MA, Taylor MI (2011) Genome duplication in amphibians and fish: an extended synthesis. J Zool 284:151–182

    Article  Google Scholar 

  10. Gallardo MH, Gonzalez CA, Cebrian I (2006) Molecular cytogenetics and allotetraploidy in the red vizcacha rat, Tympanoctomys barrerae (Rodentia, Octodontidae). Genomics 88:214–221

    Article  CAS  PubMed  Google Scholar 

  11. Lavrenchenko LA (2014) Hybrid speciation in mammals: illusion or reality? Biol Bull Rev 4:198–209

    Article  Google Scholar 

  12. Upham N, Evans B, Ojeda A (2015) The super-sized genomes of desert vizcacha rats. https://crowd.instrumentl.com/campaigns/super-sized-genomes-desert-vizcacha-rats/. Accessed April 1, 2016

  13. Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang H, Soltis PS, Soltis DE, Clifton SW, Schlarbaum SE, Schuster SC, Leebens-Mack J, Ma H, dePamphilis CW (2011) Ancestral polyploidy in seed plants and angiosperms. Nature 473:97–100

    Article  CAS  PubMed  Google Scholar 

  14. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  15. Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bowers, JE, Chapman BA, Rong J, Paterson AH (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438

    Article  CAS  PubMed  Google Scholar 

  17. Goff S et al (2002) A draft sequence of the rice genome (oryza sativa l. ssp. japonica). Science 296:92–100

    Article  CAS  PubMed  Google Scholar 

  18. Yu J et al (2002) A draft sequence of the rice genome (oryza sativa l. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  19. Tuskan G, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao R, Bhalerao R, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G, Cooper D, Coutinho P, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple J, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson D, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouze P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of black cottonwood, populus trichocarpa (torr. & gray). Science 313:1596–1604

    Article  CAS  PubMed  Google Scholar 

  20. Jaillon O et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467

    Article  CAS  PubMed  Google Scholar 

  21. McKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish TJ, Pires JC, Stevenson DW, Leebens-Mack JH (2016) A phylogenomic assessment of ancient polyploidy and genome evolution across the poales. Genome Biol Evol 8:1150–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Amborella Genome Project (2013) The Amborella genome and the evolution of flowering plants. Science 342:1241089

    Article  Google Scholar 

  23. El-Mabrouk, N, Sankoff D (2003) The reconstruction of doubled genomes. SIAM J Comput 32:754–792

    Article  Google Scholar 

  24. Alekseyev MA, Pevzner PA (2007) Colored de Bruijn graphs and the genome halving problem. IEEE/ACM Trans Comput Biol Bioinform 4:98–107

    Article  PubMed  Google Scholar 

  25. Mixtacki J (2008) Genome halving under DCJ revisited. In: Hu X, Wang J (eds) Computing and combinatorics (COCOON). 17th annual conference. Lecture notes in computer science, vol 5092. Springer, Berlin/Heidelberg, pp 276–286

    Chapter  Google Scholar 

  26. Warren R, Sankoff D (2009) Genome halving with double cut and join. J Bioinforma Comput Biol 7:357–371

    Article  CAS  Google Scholar 

  27. Tannier E, Zheng C, Sankoff D (2009) Multichromosomal median and halving problems under different genomic distances. BMC Bioinf 10:120

    Article  Google Scholar 

  28. Gagnon Y, Tremblay-Savard O, Bertrand D, El-Mabrouk N (2010) Advances on genome duplication distances. In: Tannier E (ed) Comparative genomics (RECOMB CG ‘10). Lecture notes in computer science, vol 6398. Springer, Berlin/Heidelberg, pp 25–38

    Chapter  Google Scholar 

  29. Sankoff D, Zheng C, Wall PK, dePamphilis C, Leebens-Mack J, Albert VA (2009) Towards improved reconstruction of ancestral gene order in angiosperm phylogeny. J Comput Biol 16:1353–1367

    Article  CAS  PubMed  Google Scholar 

  30. Gavranović H, Tannier E (2010) Guided genome halving: probably optimal solutions provide good insights into the preduplication ancestral genome of Saccharomyces cerevisiae. In: Pacific symposium on biocomputing, vol 15, pp 21–30

    Google Scholar 

  31. Zheng C, Zhu Q, Adam Z, Sankoff D (2008) Guided genome halving: hardness, heuristics and the history of the Hemiascomycetes. Bioinformatics 24:i96–i104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng C (2010) Pathgroups, a dynamic data structure for genome reconstruction problems. Bioinformatics 26:1587–1594

    Article  CAS  PubMed  Google Scholar 

  33. Zheng C, Sankoff D (2011) On the Pathgroups approach to rapid small phylogeny. BMC Bioinf 12:S4

    Google Scholar 

  34. Warren R, Sankoff D (2010) Genome aliquoting revisited. In: Tannier E (ed) Comparative genomics (RECOMB CG). 8th annual workshop. Lecture notes in computer science, vol 6398. Springer, Berlin/Heidelberg, pp 1–12

    Google Scholar 

  35. Freeling M et al (2012) Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Curr Opin Plant Biol 15:131–139

    Article  CAS  PubMed  Google Scholar 

  36. Eckardt N (2001) A sense of self: the role of DNA sequence elimination in allopolyploidization. Plant Cell 13:1699–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dietrich FS et al (2004): Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  CAS  PubMed  Google Scholar 

  38. Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  CAS  PubMed  Google Scholar 

  39. Byrnes JK, Morris GP, Li WH (2006) Reorganization of adjacent gene relationships in yeast genomes by whole-genome duplication and gene deletion. Mol Biol Evol 23:1136–1143

    Article  CAS  PubMed  Google Scholar 

  40. van Hoek MJ, Hogeweg P (2007) The role of mutational dynamics in genome shrinkage. Mol Biol Evol 24:2485–2494

    Article  PubMed  Google Scholar 

  41. Sankoff D, Zheng C, Zhu Q (2010) The collapse of gene complement following whole genome duplication. BMC Genomics 11:313–313

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wang B, Zheng C, Sankoff D (2011) Fractionation statistics. BMC Bioinf 12(S9):S5

    CAS  Google Scholar 

  43. Sankoff D, Zheng C, Wang B (2012) A model for biased fractionation after whole genome duplication. BMC Genomics 13(S1):S8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu Z, Sankoff D (2016) A continuous analog of run length distributions reflecting accumulated fractionation events. BMC Bioinf 17:412

    Article  Google Scholar 

  45. Zheng C, Sankoff D (2012) Fractionation, rearrangement and subgenome dominance. Bioinformatics 28:i402–i408

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jahn K, Zheng C, Kováč J, Sankoff D (2012) A consolidation algorithm for genomes fractionated after higher order polyploidization. BMC Bioinf 13(S19):S8

    Google Scholar 

  47. McLachlan GJ, Peel D, Basford KE, Adams P (1999) The Emmix software for the fitting of mixtures of normal and t-components. J Stat Softw 4(2):1–14

    Article  Google Scholar 

  48. Sankoff D, Zheng C, Lyons E, Tang H (2016) The trees in the peaks. In: Algorithms for computational biology. Lecture notes in bioinformatics, vol 9702. Springer, Cham

    Google Scholar 

  49. Kimura M (1984) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  50. Kumar S, Subramanian S (2002) Mutation rates in mammalian genomes. Proc Natl Acad Sci 99:803–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zheng C, Sankoff D (2013) Practical aliquoting of flowering plant genomes. BMC Bioinf 14(15):S8

    Article  Google Scholar 

  52. Argout X et al (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  CAS  PubMed  Google Scholar 

  53. Ming R, VanBuren R, Liu Y, Yang M, Han Y, Li L-T, Zhang Q, Kim M-J, Schatz MC, Campbell M, Li J, Bowers JE, Tang H, Lyons E, Ferguson AA, Narzisi G, Nelson DR, Blaby-Haas CE, Gschwend AR, Jiao Y, Der JP, Zeng F, Han J, Min XJ, Hudson KA, Singh R, Grennan AK, Karpowicz SJ, Watling JR, Ito K, Robinson SA, Hudson ME, Yu Q, Mockler TC, Carroll A, Zheng Y, Sunkar R, Jia R, Chen N, Arro J, Wai CM, Wafula E, Spence A, Han Y, Xu L, Zhang J, Peery R, Haus MJ, Xiong W, Walsh JA, Wu J, Wang M-L, Zhu YJ, Paull RE, Britt AB, Du C, Downie SR, Schuler MA, Michael TP, Long SP, Ort DR, Schopf JW, Gang DR, Jiang N, Yandell M, dePamphilis CW, Merchant SS, Paterson AH, Buchanan BB, Li S, Shen-Miller J (2013) Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol 14(5):1–11

    Google Scholar 

  54. Zheng C, Sankoff D (2014) Practical halving; the Nelumbo nucifera evidence on early eudicot evolution. Comput Biol Chem 50:75–81

    Article  CAS  PubMed  Google Scholar 

  55. Tomato Genome Consortium et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Google Scholar 

  56. Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G et al (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    Article  CAS  PubMed  Google Scholar 

  57. Schnable JC, Springer NM, Freeling M (2011) Differentiation of the maize subgenomes by genome dominance and both ancient and ongoing gene loss. Proc Natl Acad Sci 108:4069–4074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ming R, VanBuren R, Wai CM, Tang H, Schatz MC, Bowers JE, Lyons E, Wang M-L, Chen J, Biggers E et al (2015) The pineapple genome and the evolution of cam photosynthesis. Nat Genet 47:1435–1442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun J-H, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim J-S, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon S-J, Choi S-R, Lee T-H, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Google Scholar 

  60. Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IAP, Zhao M, Ma J, Yu J, Huang S, Wang X, J Wang, Lu K, Fang Z, Bancroft I, Yang T-J, Hu Q, Wang X, Yue Z, Li H, Yang L, Wu J, Zhou Q, Wang W, King GJ, Pires JC, Lu C, Wu Z, Sampath P, Wang Z, Guo H, Pan S, Yang L, Min J, Zhang D, Jin D, Li W, Belcram H, Tu J, Guan M, Qi C, Du D, Li J, Jiang L, Batley J, Sharpe AG, Park B-S, Ruperao P, Cheng F, Waminal NE, Huang Y, Dong C, Wang L, Li J, Hu Z, Zhuang M, Huang Y, Huang J, Shi J, Mei D, Liu J, Lee T-H, Wang J, Jin H, Li Z, Li X, Zhang J, Xiao L, Zhou Y, Liu Z, Liu X, Qin R, Tang X, Liu W, Wang Y, Zhang Y, Lee J, Kim HH, Denoeud F, Xu X, Liang X, Hua W, Wang X, Wang J, Chalhoub B, Paterson AH (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kitashiba H, Li F, Hirakawa H, Kawanabe T, Zou Z, Hasegawa Y, Tonosaki K, Shirasawa S, Fukushima A, Yokoi S, Takahata Y, Kakizaki T, Ishida M, Okamoto S, Sakamoto K, Shirasawa K, Tabata S, Nishio T (2014) Draft sequences of the radish (Raphanus sativus l.) genome. DNA Res 21(5):481–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo Y-L (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nat Genet 43:476–481

    Article  PubMed  PubMed Central  Google Scholar 

  63. Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, Dewar K, Stinchcombe JR, Schoen DJ, Wang X, Schmutz J, Town CD, Edger PP, Pires JC, Schumaker KS, Jarvis DE, Mandakova T, Lysak MA, van den Bergh E, Schranz ME, Harrison PM, Moses AM, Bureau TE, Wright SI, Blanchette M (2013) An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet 45:891–898

    Article  CAS  PubMed  Google Scholar 

  64. Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673

    Article  CAS  PubMed  Google Scholar 

  65. Lyons E, Pedersen B, Kane J, Freeling M (2008) The value of nonmodel genomes and an example using SynMap within CoGe to dissect the hexaploidy that predates rosids. Trop Plant Biol 1:181–190

    Article  CAS  Google Scholar 

  66. Kagale S, Robinson SJ, Nixon J, Xiao R, Huebert T, Condie J, Kessler D, Clarke WE, Edger PP, Links MG et al (2014) Polyploid evolution of the Brassicaceae during the cenozoic era. Plant Cell 26:2777–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Research supported in part by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC) and by National Science Foundation IOS –1339156. DS holds the Canada Research Chair in Mathematical Genomics.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Sankoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sankoff, D., Zheng, C. (2018). Whole Genome Duplication in Plants: Implications for Evolutionary Analysis. In: Setubal, J., Stoye, J., Stadler, P. (eds) Comparative Genomics. Methods in Molecular Biology, vol 1704. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7463-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7463-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7461-0

  • Online ISBN: 978-1-4939-7463-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics