Skip to main content

Topoisomerase I and Genome Stability: The Good and the Bad

  • Protocol
  • First Online:
DNA Topoisomerases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1703))

Abstract

Topoisomerase I (Top1) resolves torsional stress that accumulates during transcription, replication and chromatin remodeling by introducing a transient single-strand break in DNA. The cleavage activity of Top1 has opposing roles, either promoting or destabilizing genome integrity depending on the context. Resolution of transcription-associated negative supercoils, for example, prevents pairing of the nascent RNA with the DNA template (R-loops) as well as DNA secondary structure formation. Reduced Top1 levels thus enhance CAG repeat contraction, somatic hypermutation, and class switch recombination. Actively transcribed ribosomal DNA is also destabilized in the absence of Top1, reflecting the importance of Top1 in ensuring efficient transcription. In terms of promoting genome instability, an aborted Top1 catalytic cycle stimulates deletions at short tandem repeats and the enzyme’s transesterification activity supports illegitimate recombination. Finally, Top1 incision at ribonucleotides embedded in DNA generates deletions in tandem repeats, and induces gross chromosomal rearrangements and mitotic recombination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Champoux JJ (2001) DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70:369–413. https://doi.org/10.1146/annurev.biochem.70.1.369

    Article  CAS  PubMed  Google Scholar 

  2. Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol 3(6):430–440. https://doi.org/10.1038/nrm831

    Article  CAS  PubMed  Google Scholar 

  3. Pommier Y, Sun Y, Huang SN et al (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 17(11):703–721. https://doi.org/10.1038/nrm.2016.111

    Article  CAS  PubMed  Google Scholar 

  4. Liu LF, Wang JC (1987) Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84(20):7024–7027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wu HY, Shyy SH, Wang JC et al (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53(3):433–440

    Article  CAS  PubMed  Google Scholar 

  6. Tanizawa A, Kohn KW, Pommier Y (1993) Induction of cleavage in topoisomerase I c-DNA by topoisomerase I enzymes from calf thymus and wheat germ in the presence and absence of camptothecin. Nucleic Acids Res 21(22):5157–5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Been MD, Burgess RR, Champoux JJ (1984) Nucleotide sequence preference at rat liver and wheat germ type 1 DNA topoisomerase breakage sites in duplex SV40 DNA. Nucleic Acids Res 12(7):3097–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shuman S, Prescott J (1990) Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I. J Biol Chem 265(29):17826–17836

    CAS  PubMed  Google Scholar 

  9. Pourquier P, Ueng LM, Kohlhagen G et al (1997) Effects of uracil incorporation, DNA mismatches, and abasic sites on cleavage and religation activities of mammalian topoisomerase I. J Biol Chem 272(12):7792–7796

    Article  CAS  PubMed  Google Scholar 

  10. Pommier Y, Barcelo JM, Rao VA et al (2006) Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 81:179–229. https://doi.org/10.1016/S0079-6603(06)81005-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schultz MC, Brill SJ, Ju Q et al (1992) Topoisomerases and yeast rRNA transcription: negative supercoiling stimulates initiation and topoisomerase activity is required for elongation. Genes Dev 6(7):1332–1341

    Article  CAS  PubMed  Google Scholar 

  12. Fernandez X, Diaz-Ingelmo O, Martinez-Garcia B et al (2014) Chromatin regulates DNA torsional energy via topoisomerase II-mediated relaxation of positive supercoils. EMBO J 33(13):1492–1501. 10.15252/embj.201488091

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Salceda J, Fernandez X, Roca J (2006) Topoisomerase II, not topoisomerase I, is the proficient relaxase of nucleosomal DNA. EMBO J 25(11):2575–2583. https://doi.org/10.1038/sj.emboj.7601142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. French SL, Sikes ML, Hontz RD et al (2011) Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol Cell Biol 31(3):482–494. https://doi.org/10.1128/mcb.00589-10

    Article  CAS  PubMed  Google Scholar 

  15. Staker BL, Hjerrild K, Feese MD et al (2002) The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 99(24):15387–15392. https://doi.org/10.1073/pnas.242259599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tomicic MT, Kaina B (2013) Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta 1835(1):11–27. https://doi.org/10.1016/j.bbcan.2012.09.002

    CAS  PubMed  Google Scholar 

  17. Colley WC, van der Merwe M, Vance JR et al (2004) Substitution of conserved residues within the active site alters the cleavage religation equilibrium of DNA topoisomerase I. J Biol Chem 279(52):54069–54078. https://doi.org/10.1074/jbc.M409764200

    Article  CAS  PubMed  Google Scholar 

  18. Andersen SL, Sloan RS, Petes TD et al (2015) Genome-destabilizing effects associated with Top1 loss or accumulation of Top1 cleavage complexes in yeast. PLoS Genet 11(4):e1005098. https://doi.org/10.1371/journal.pgen.1005098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Sloan RS (2016) Topoisomerase 1 (Top1)-associated genome instability in yeast: effects of persistent cleavage complexes or increased Top1 levels. Dissertation, Duke University

    Google Scholar 

  20. Husain I, Mohler JL, Seigler HF et al (1994) Elevation of topoisomerase I messenger RNA, protein, and catalytic activity in human tumors: demonstration of tumor-type specificity and implications for cancer chemotherapy. Cancer Res 54(2):539–546

    CAS  PubMed  Google Scholar 

  21. Pfister TD, Reinhold WC, Agama K et al (2009) Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 8(7):1878–1884. https://doi.org/10.1158/1535-7163.mct-09-0016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shamanna RA, Lu H, Croteau DL et al (2016) Camptothecin targets WRN protein: mechanism and relevance in clinical breast cancer. Oncotarget 7(12):13269–13284. 10.18632/oncotarget.7906

    Article  PubMed  PubMed Central  Google Scholar 

  23. Koster DA, Palle K, Bot ES et al (2007) Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448(7150):213–217. https://doi.org/10.1038/nature05938

    Article  CAS  PubMed  Google Scholar 

  24. Ray Chaudhuri A, Hashimoto Y, Herrador R et al (2012) Topoisomerase I poisoning results in PARP-mediated replication fork reversal. Nat Struct Mol Biol 19(4):417–423. https://doi.org/10.1038/nsmb.2258

    Article  CAS  PubMed  Google Scholar 

  25. Yang SW, Burgin AB Jr, Huizenga BN et al (1996) A eukaryotic enzyme that can disjoin dead-end covalent complexes between DNA and type I topoisomerases. Proc Natl Acad Sci U S A 93(21):11534–11539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Debethune L, Kohlhagen G, Grandas A et al (2002) Processing of nucleopeptides mimicking the topoisomerase I-DNA covalent complex by tyrosyl-DNA phosphodiesterase. Nucleic Acids Res 30(5):1198–1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stingele J, Schwarz MS, Bloemeke N et al (2014) A DNA-dependent protease involved in DNA-protein crosslink repair. Cell 158(2):327–338. https://doi.org/10.1016/j.cell.2014.04.053

    Article  CAS  PubMed  Google Scholar 

  28. Balakirev MY, Mullally JE, Favier A et al (2015) Wss1 metalloprotease partners with Cdc48/Doa1 in processing genotoxic SUMO conjugates. elife 4. https://doi.org/10.7554/eLife.06763

  29. Vance JR, Wilson TE (2001) Uncoupling of 3′-phosphatase and 5′-kinase functions in budding yeast. Characterization of Saccharomyces cerevisiae DNA 3′-phosphatase (TPP1). J Biol Chem 276(18):15073–15081. https://doi.org/10.1074/jbc.M011075200

    Article  CAS  PubMed  Google Scholar 

  30. Vance JR, Wilson TE (2001) Repair of DNA strand breaks by the overlapping functions of lesion-specific and non-lesion-specific DNA 3′ phosphatases. Mol Cell Biol 21(21):7191–7198. https://doi.org/10.1128/mcb.21.21.7191-7198.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weinfeld M, Mani RS, Abdou I et al (2011) Tidying up loose ends: the role of polynucleotide kinase/phosphatase in DNA strand break repair. Trends Biochem Sci 36(5):262–271. https://doi.org/10.1016/j.tibs.2011.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu Y, Her C (2015) Inhibition of topoisomerase (DNA) I (TOP1): DNA damage repair and anticancer therapy. Biomol Ther 5(3):1652–1670. https://doi.org/10.3390/biom5031652

    CAS  Google Scholar 

  33. Durand-Dubief M, Persson J, Norman U et al (2010) Topoisomerase I regulates open chromatin and controls gene expression in vivo. EMBO J 29(13):2126–2134. https://doi.org/10.1038/emboj.2010.109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Marinello J, Chillemi G, Bueno S et al (2013) Antisense transcripts enhanced by camptothecin at divergent CpG-island promoters associated with bursts of topoisomerase I-DNA cleavage complex and R-loop formation. Nucleic Acids Res 41(22):10110–10123. https://doi.org/10.1093/nar/gkt778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Puc J, Kozbial P, Li W et al (2015) Ligand-dependent enhancer activation regulated by topoisomerase-I activity. Cell 160(3):367–380. https://doi.org/10.1016/j.cell.2014.12.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marinello J, Bertoncini S, Aloisi I et al (2016) Dynamic effects of topoisomerase I inhibition on R-loops and short transcripts at active promoters. PLoS One 11(1):e0147053. https://doi.org/10.1371/journal.pone.0147053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Rosenberg M, Fan AX, Lin IJ et al (2013) Cell-cycle specific association of transcription factors and RNA polymerase II with the human beta-globin gene locus. J Cell Biochem 114(9):1997–2006. https://doi.org/10.1002/jcb.24542

    Article  CAS  PubMed  Google Scholar 

  38. Baranello L, Wojtowicz D, Cui K et al (2016) RNA polymerase II regulates topoisomerase 1 activity to favor efficient transcription. Cell 165(2):357–371. https://doi.org/10.1016/j.cell.2016.02.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Phatnani HP, Greenleaf AL (2004) Identifying phosphoCTD-associating proteins. Methods Mol Biol 257:17–28. https://doi.org/10.1385/1-59259-750-5:017

    CAS  PubMed  Google Scholar 

  40. Wu J, Phatnani HP, Hsieh TS et al (2010) The phosphoCTD-interacting domain of topoisomerase I. Biochem Biophys Res Commun 397(1):117–119. https://doi.org/10.1016/j.bbrc.2010.05.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Husain A, Begum NA, Taniguchi T et al (2016) Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability. Nat Commun 7:10549. https://doi.org/10.1038/ncomms10549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zylka MJ, Simon JM, Philpot BD (2015) Gene length matters in neurons. Neuron 86(2):353–355. https://doi.org/10.1016/j.neuron.2015.03.059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. King IF, Yandava CN, Mabb AM et al (2013) Topoisomerases facilitate transcription of long genes linked to autism. Nature 501(7465):58–62. https://doi.org/10.1038/nature12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mabb AM, Simon JM, King IF et al (2016) Topoisomerase 1 regulates gene expression in neurons through cleavage complex-dependent and -independent mechanisms. PLoS One 11(5):e0156439. https://doi.org/10.1371/journal.pone.0156439

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Solier S, Ryan MC, Martin SE et al (2013) Transcription poisoning by topoisomerase I is controlled by gene length, splice sites, and miR-142-3p. Cancer Res 73(15):4830–4839. https://doi.org/10.1158/0008-5472.CAN-12-3504

    Article  CAS  PubMed  Google Scholar 

  46. Chan YA, Aristizabal MJ, Lu PY et al (2014) Genome-wide profiling of yeast DNA:RNA hybrid prone sites with DRIP-Chip. PLoS Genet 10(4):e1004288. https://doi.org/10.1371/journal.pgen.1004288

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wahba L, Amon JD, Koshland D et al (2011) RNase H and multiple RNA biogenesis factors cooperate to prevent RNA:DNA hybrids from generating genome instability. Mol Cell 44(6):978–988. https://doi.org/10.1016/j.molcel.2011.10.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wahba L, Costantino L, Tan FJ et al (2016) S1-DRIP-seq identifies high expression and polyA tracts as major contributors to R-loop formation. Genes Dev 30(11):1327–1338. https://doi.org/10.1101/gad.280834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rossi F, Labourier E, Forne T et al (1996) Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381(6577):80–82. https://doi.org/10.1038/381080a0

    Article  CAS  PubMed  Google Scholar 

  50. Labourier E, Rossi F, Gallouzi IE et al (1998) Interaction between the N-terminal domain of human DNA topoisomerase I and the arginine-serine domain of its substrate determines phosphorylation of SF2/ASF splicing factor. Nucleic Acids Res 26(12):2955–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Soret J, Gabut M, Dupon C et al (2003) Altered serine/arginine-rich protein phosphorylation and exonic enhancer-dependent splicing in mammalian cells lacking topoisomerase I. Cancer Res 63(23):8203–8211

    CAS  PubMed  Google Scholar 

  52. Malanga M, Czubaty A, Girstun A et al (2008) Poly(ADP-ribose) binds to the splicing factor ASF/SF2 and regulates its phosphorylation by DNA topoisomerase I. J Biol Chem 283(29):19991–19998. https://doi.org/10.1074/jbc.M709495200

    Article  CAS  PubMed  Google Scholar 

  53. Huertas P, Aguilera A (2003) Cotranscriptionally formed DNA:RNA hybrids mediate transcription elongation impairment and transcription-associated recombination. Mol Cell 12(3):711–721

    Article  CAS  PubMed  Google Scholar 

  54. Strasser K, Masuda S, Mason P et al (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417(6886):304–308. https://doi.org/10.1038/nature746

    Article  PubMed  CAS  Google Scholar 

  55. Luna R, Rondon AG, Aguilera A (2012) New clues to understand the role of THO and other functionally related factors in mRNP biogenesis. Biochim Biophys Acta 1819(6):514–520. https://doi.org/10.1016/j.bbagrm.2011.11.012

    Article  CAS  PubMed  Google Scholar 

  56. Gowrishankar J, Harinarayanan R (2004) Why is transcription coupled to translation in bacteria? Mol Microbiol 54(3):598–603. https://doi.org/10.1111/j.1365-2958.2004.04289.x

    Article  CAS  PubMed  Google Scholar 

  57. Leela JK, Syeda AH, Anupama K et al (2013) Rho-dependent transcription termination is essential to prevent excessive genome-wide R-loops in Escherichia coli. Proc Natl Acad Sci U S A 110(1):258–263. https://doi.org/10.1073/pnas.1213123110

    Article  CAS  PubMed  Google Scholar 

  58. El Hage A, French SL, Beyer AL et al (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24(14):1546–1558. https://doi.org/10.1101/gad.573310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Gan W, Guan Z, Liu J et al (2011) R-loop-mediated genomic instability is caused by impairment of replication fork progression. Genes Dev 25(19):2041–2056. https://doi.org/10.1101/gad.17010011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wellinger RE, Prado F, Aguilera A (2006) Replication fork progression is impaired by transcription in hyperrecombinant yeast cells lacking a functional THO complex. Mol Cell Biol 26(8):3327–3334. https://doi.org/10.1128/MCB.26.8.3327-3334.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9. https://doi.org/10.1038/ncb2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276(6):1494–1505. https://doi.org/10.1111/j.1742-4658.2009.06908.x

    Article  CAS  PubMed  Google Scholar 

  63. Mischo HE, Gomez-Gonzalez B, Grzechnik P et al (2011) Yeast Sen1 helicase protects the genome from transcription-associated instability. Mol Cell 41(1):21–32. https://doi.org/10.1016/j.molcel.2010.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805. https://doi.org/10.1016/j.molcel.2011.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li X, Manley JL (2005) Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122(3):365–378. https://doi.org/10.1016/j.cell.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  66. Aguilera A, Garcia-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46(2):115–124. https://doi.org/10.1016/j.molcel.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  67. Skourti-Stathaki K, Proudfoot NJ (2014) A double-edged sword: R loops as threats to genome integrity and powerful regulators of gene expression. Genes Dev 28(13):1384–1396. https://doi.org/10.1101/gad.242990.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hamperl S, Cimprich KA (2014) The contribution of co-transcriptional RNA:DNA hybrid structures to DNA damage and genome instability. DNA Repair 19:84–94. https://doi.org/10.1016/j.dnarep.2014.03.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sollier J, Cimprich KA (2015) Breaking bad: R-loops and genome integrity. Trends Cell Biol 25(9):514–522. https://doi.org/10.1016/j.tcb.2015.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tuduri S, Crabbe L, Conti C et al (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11(11):1315–1324. https://doi.org/10.1038/ncb1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ribeyre C, Zellweger R, Chauvin M et al (2016) Nascent DNA proteomics reveals a chromatin remodeler required for topoisomerase I loading at replication forks. Cell Rep 15(2):300–309. https://doi.org/10.1016/j.celrep.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  72. Christman MF, Dietrich FS, Fink GR (1988) Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55(3):413–425

    Article  CAS  PubMed  Google Scholar 

  73. Houseley J, Kotovic K, El Hage A et al (2007) Trf4 targets ncRNAs from telomeric and rDNA spacer regions and functions in rDNA copy number control. EMBO J 26(24):4996–5006. https://doi.org/10.1038/sj.emboj.7601921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Krawczyk C, Dion V, Schar P et al (2014) Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability. Nucleic Acids Res 42(8):4985–4995. https://doi.org/10.1093/nar/gku148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Trigueros S, Roca J (2002) Failure to relax negative supercoiling of DNA is a primary cause of mitotic hyper-recombination in topoisomerase-deficient yeast cells. J Biol Chem 277(40):37207–37211. https://doi.org/10.1074/jbc.M206663200

    Article  CAS  PubMed  Google Scholar 

  76. Tornaletti S, Park-Snyder S, Hanawalt PC (2008) G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J Biol Chem 283(19):12756–12762. https://doi.org/10.1074/jbc.M705003200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lopes J, Piazza A, Bermejo R et al (2011) G-quadruplex-induced instability during leading-strand replication. EMBO J 30(19):4033–4046. https://doi.org/10.1038/emboj.2011.316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. London TB, Barber LJ, Mosedale G et al (2008) FANCJ is a structure-specific DNA helicase associated with the maintenance of genomic G/C tracts. J Biol Chem 283(52):36132–36139. https://doi.org/10.1074/jbc.M808152200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Paeschke K, Capra JA, Zakian VA (2011) DNA replication through G-quadruplex motifs is promoted by the Saccharomyces cerevisiae Pif1 DNA helicase. Cell 145(5):678–691. https://doi.org/10.1016/j.cell.2011.04.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kim N, Jinks-Robertson S (2011) Guanine repeat-containing sequences confer transcription-dependent instability in an orientation-specific manner in yeast. DNA Repair 10(9):953–960. https://doi.org/10.1016/j.dnarep.2011.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yadav P, Harcy V, Argueso JL et al (2014) Topoisomerase I plays a critical role in suppressing genome instability at a highly transcribed G-quadruplex-forming sequence. PLoS Genet 10(12):e1004839. https://doi.org/10.1371/journal.pgen.1004839

    Article  PubMed  PubMed Central  Google Scholar 

  82. Yadav P, Owiti N, Kim N (2016) The role of topoisomerase I in suppressing genome instability associated with a highly transcribed guanine-rich sequence is not restricted to preventing RNA:DNA hybrid accumulation. Nucleic Acids Res 44(2):718–729. https://doi.org/10.1093/nar/gkv1152

    Article  CAS  PubMed  Google Scholar 

  83. Arimondo PB, Riou JF, Mergny JL et al (2000) Interaction of human DNA topoisomerase I with G-quartet structures. Nucleic Acids Res 28(24):4832–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Marchand C, Pourquier P, Laco GS et al (2002) Interaction of human nuclear topoisomerase I with guanosine quartet-forming and guanosine-rich single-stranded DNA and RNA oligonucleotides. J Biol Chem 277(11):8906–8911. https://doi.org/10.1074/jbc.M106372200

    Article  CAS  PubMed  Google Scholar 

  85. Shuai L, Deng M, Zhang D et al (2010) Quadruplex-duplex motifs as new topoisomerase I inhibitors. Nucleosides Nucleotides Nucleic Acids 29(11):841–853. https://doi.org/10.1080/15257770.2010.530635

    Article  CAS  PubMed  Google Scholar 

  86. Gazumyan A, Bothmer A, Klein IA et al (2012) Activation-induced cytidine deaminase in antibody diversification and chromosome translocation. Adv Cancer Res 113:167–190. https://doi.org/10.1016/b978-0-12-394280-7.00005-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Matthews AJ, Zheng S, DiMenna LJ et al (2014) Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 122:1–57. https://doi.org/10.1016/b978-0-12-800267-4.00001-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hwang JK, Alt FW, Yeap LS (2015) Related mechanisms of antibody somatic hypermutation and class switch recombination. Microbiol Spectr 3(1):Mdna3-0037-2014. https://doi.org/10.1128/microbiolspec.MDNA3-0037-2014

    PubMed  Google Scholar 

  89. Senavirathne G, Bertram JG, Jaszczur M et al (2015) Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution. Nat Commun 6:10209. https://doi.org/10.1038/ncomms10209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Huang FT, Yu K, Balter BB et al (2007) Sequence dependence of chromosomal R-loops at the immunoglobulin heavy-chain Smu class switch region. Mol Cell Biol 27(16):5921–5932. https://doi.org/10.1128/mcb.00702-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ruiz JF, Gomez-Gonzalez B, Aguilera A (2011) AID induces double-strand breaks at immunoglobulin switch regions and c-MYC causing chromosomal translocations in yeast THO mutants. PLoS Genet 7(2):e1002009. https://doi.org/10.1371/journal.pgen.1002009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kobayashi M, Aida M, Nagaoka H et al (2009) AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination. Proc Natl Acad Sci U S A 106(52):22375–22380. https://doi.org/10.1073/pnas.0911879106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kobayashi M, Sabouri Z, Sabouri S et al (2011) Decrease in topoisomerase I is responsible for activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Proc Natl Acad Sci U S A 108(48):19305–19310. https://doi.org/10.1073/pnas.1114522108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ronai D, Iglesias-Ussel MD, Fan M et al (2007) Detection of chromatin-associated single-stranded DNA in regions targeted for somatic hypermutation. J Exp Med 204(1):181–190. https://doi.org/10.1084/jem.20062032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Maul RW, Saribasak H, Cao Z et al (2015) Topoisomerase I deficiency causes RNA polymerase II accumulation and increases AID abundance in immunoglobulin variable genes. DNA Repair 30:46–52. https://doi.org/10.1016/j.dnarep.2015.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gatchel JR, Zoghbi HY (2005) Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 6(10):743–755. https://doi.org/10.1038/nrg1691

    Article  CAS  PubMed  Google Scholar 

  97. La Spada AR, Taylor JP (2010) Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11(4):247–258. https://doi.org/10.1038/nrg2748

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Wojciechowska M, Krzyzosiak WJ (2011) CAG repeat RNA as an auxiliary toxic agent in polyglutamine disorders. RNA Biol 8(4):565–571. https://doi.org/10.4161/rna.8.4.15397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hubert L Jr, Lin Y, Dion V et al (2011) Topoisomerase 1 and single-strand break repair modulate transcription-induced CAG repeat contraction in human cells. Mol Cell Biol 31(15):3105–3112. https://doi.org/10.1128/mcb.05158-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Caldecott KW (2008) Single-strand break repair and genetic disease. Nat Rev Genet 9(8):619–631. https://doi.org/10.1038/nrg2380

    CAS  PubMed  Google Scholar 

  101. Takahashi T, Burguiere-Slezak G, Van der Kemp PA et al (2011) Topoisomerase 1 provokes the formation of short deletions in repeated sequences upon high transcription in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 108(2):692–697. https://doi.org/10.1073/pnas.1012582108

    Article  CAS  PubMed  Google Scholar 

  102. Lippert MJ, Kim N, Cho JE et al (2011) Role for topoisomerase 1 in transcription-associated mutagenesis in yeast. Proc Natl Acad Sci U S A 108(2):698–703. https://doi.org/10.1073/pnas.1012363108

    Article  CAS  PubMed  Google Scholar 

  103. Nick McElhinny SA, Watts BE, Kumar D et al (2010) Abundant ribonucleotide incorporation into DNA by yeast replicative polymerases. Proc Natl Acad Sci U S A 107(11):4949–4954. https://doi.org/10.1073/pnas.0914857107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Nick McElhinny SA, Kumar D, Clark AB et al (2010) Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol 6(10):774–781. https://doi.org/10.1038/nchembio.424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lujan SA, Williams JS, Clausen AR et al (2013) Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 50(3):437–443. https://doi.org/10.1016/j.molcel.2013.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Williams JS, Clausen AR, Lujan SA et al (2015) Evidence that processing of ribonucleotides in DNA by topoisomerase 1 is leading-strand specific. Nat Struct Mol Biol 22(4):291–297. https://doi.org/10.1038/nsmb.2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sparks JL, Chon H, Cerritelli SM et al (2012) RNase H2-initiated ribonucleotide excision repair. Mol Cell 47(6):980–986. https://doi.org/10.1016/j.molcel.2012.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim N, Huang SN, Williams JS et al (2011) Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332(6037):1561–1564. https://doi.org/10.1126/science.1205016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Clark AB, Lujan SA, Kissling GE et al (2011) Mismatch repair-independent tandem repeat sequence instability resulting from ribonucleotide incorporation by DNA polymerase ε. DNA Repair 10(5):476–482. https://doi.org/10.1016/j.dnarep.2011.02.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Potenski CJ, Niu H, Sung P et al (2014) Avoidance of ribonucleotide-induced mutations by RNase H2 and Srs2-Exo1 mechanisms. Nature 511(7508):251–254. https://doi.org/10.1038/nature13292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Niu H, Potenski CJ, Epshtein A et al (2016) Roles of DNA helicases and Exo1 in the avoidance of mutations induced by Top1-mediated cleavage at ribonucleotides in DNA. Cell Cycle 15(3):331–336. https://doi.org/10.1080/15384101.2015.1128594

    Article  CAS  PubMed  Google Scholar 

  112. Williams JS, Smith DJ, Marjavaara L et al (2013) Topoisomerase 1-mediated removal of ribonucleotides from nascent leading-strand DNA. Mol Cell 49(5):1010–1015. https://doi.org/10.1016/j.molcel.2012.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sekiguchi J, Shuman S (1997) Site-specific ribonuclease activity of eukaryotic DNA topoisomerase I. Mol Cell 1(1):89–97

    Article  CAS  PubMed  Google Scholar 

  114. Cho JE, Kim N, Li YC et al (2013) Two distinct mechanisms of topoisomerase 1-dependent mutagenesis in yeast. DNA Repair 12(3):205–211. https://doi.org/10.1016/j.dnarep.2012.12.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sparks JL, Burgers PM (2015) Error-free and mutagenic processing of topoisomerase 1-provoked damage at genomic ribonucleotides. EMBO J 34(9):1259–1269. 10.15252/embj.201490868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Huang SY, Ghosh S, Pommier Y (2015) Topoisomerase I alone is sufficient to produce short DNA deletions and can also reverse nicks at ribonucleotide sites. J Biol Chem 290(22):14068–14076. https://doi.org/10.1074/jbc.M115.653345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cho JE, Huang SN, Burgers PM et al (2016) Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo. Nucleic Acids Res 44(16):7714–7721. https://doi.org/10.1093/nar/gkw495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Cho JE, Kim N, Jinks-Robertson S (2015) Topoisomerase 1-dependent deletions initiated by incision at ribonucleotides are biased to the non-transcribed strand of a highly activated reporter. Nucleic Acids Res 43(19):9306–9313. https://doi.org/10.1093/nar/gkv824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Cho JE, Jinks-Robertson S (2016) Ribonucleotides and transcription-associated mutagenesis in yeast. J Mol Biol. https://doi.org/10.1016/j.jmb.2016.08.005

  120. Stewart L, Redinbo MR, Qiu X et al (1998) A model for the mechanism of human topoisomerase I. Science 279(5356):1534–1541

    Article  CAS  PubMed  Google Scholar 

  121. Wu J, Liu LF (1997) Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 25(21):4181–4186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Conover HN, Lujan SA, Chapman MJ et al (2015) Stimulation of chromosomal rearrangements by ribonucleotides. Genetics 201(3):951–961. https://doi.org/10.1534/genetics.115.181149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Epshtein A, Potenski CJ, Klein HL (2016) Increased spontaneous recombination in RNase H2-deficient cells arises from multiple contiguous rNMPs and not from single rNMP residues incorporated by DNA polymerase epsilon. Microb Cell 3(6):248–254

    Article  PubMed  PubMed Central  Google Scholar 

  124. Allen-Soltero S, Martinez SL, Putnam CD et al (2014) A Saccharomyces cerevisiae RNase H2 interaction network functions to suppress genome instability. Mol Cell Biol 34(8):1521–1534. https://doi.org/10.1128/mcb.00960-13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Mankouri HW, Ngo HP, Hickson ID (2009) Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol Biol Cell 20(6):1683–1694. https://doi.org/10.1091/mbc.E08-08-0877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Ii M, Ii T, Mironova LI et al (2011) Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2. Mutat Res 714(1–2):33–43. https://doi.org/10.1016/j.mrfmmm.2011.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Chon H, Sparks JL, Rychlik M et al (2013) RNase H2 roles in genome integrity revealed by unlinking its activities. Nucleic Acids Res 41(5):3130–3143. https://doi.org/10.1093/nar/gkt027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Llorente B, Smith CE, Symington LS (2008) Break-induced replication: what is it and what is it for? Cell Cycle 7(7):859–864. https://doi.org/10.4161/cc.7.7.5613

    Article  CAS  PubMed  Google Scholar 

  129. O’Connell K, Jinks-Robertson S, Petes TD (2015) Elevated genome-wide instability in yeast mutants lacking RNase H activity. Genetics 201(3):963–975. https://doi.org/10.1534/genetics.115.182725

    Article  PubMed  PubMed Central  Google Scholar 

  130. Shuman S, Turner J (1993) Site-specific interaction of vaccinia virus topoisomerase I with base and sugar moieties in duplex DNA. J Biol Chem 268(25):18943–18950

    CAS  PubMed  Google Scholar 

  131. Been MD, Champoux JJ (1984) Breakage of single-stranded DNA by eukaryotic type 1 topoisomerase occurs only at regions with the potential for base-pairing. J Mol Biol 180(3):515–531

    Article  CAS  PubMed  Google Scholar 

  132. Waters CA, Strande NT, Wyatt DW et al (2014) Nonhomologous end joining: a good solution for bad ends. DNA Repair 17:39–51. https://doi.org/10.1016/j.dnarep.2014.02.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Christiansen K, Svejstrup AB, Andersen AH et al (1993) Eukaryotic topoisomerase I-mediated cleavage requires bipartite DNA interaction. Cleavage of DNA substrates containing strand interruptions implicates a role for topoisomerase I in illegitimate recombination. J Biol Chem 268(13):9690–9701

    CAS  PubMed  Google Scholar 

  134. Henningfeld KA, Hecht SM (1995) A model for topoisomerase I-mediated insertions and deletions with duplex DNA substrates containing branches, nicks, and gaps. Biochemistry 34(18):6120–6129

    Article  CAS  PubMed  Google Scholar 

  135. Bullock P, Champoux JJ, Botchan M (1985) Association of crossover points with topoisomerase I cleavage sites: a model for nonhomologous recombination. Science 230(4728):954–958

    Article  CAS  PubMed  Google Scholar 

  136. Kovac MB, Kovacova M, Bachraty H et al (2015) High-resolution breakpoint analysis provides evidence for the sequence-directed nature of genome rearrangements in hereditary disorders. Hum Mutat 36(2):250–259. https://doi.org/10.1002/humu.22734

    Article  CAS  PubMed  Google Scholar 

  137. Zhu J, Schiestl RH (1996) Topoisomerase I involvement in illegitimate recombination in Saccharomyces cerevisiae. Mol Cell Biol 16:1805–1812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Zhu J, Schiestl RH (2004) Human topoisomerase I mediates illegitimate recombination leading to DNA insertion into the ribosomal DNA locus in Saccharomyces cerevisiae. Mol Gen Genomics 271(3):347–358. https://doi.org/10.1007/s00438-004-0987-7

    Article  CAS  Google Scholar 

  139. Pommier Y, Jenkins J, Kohlhagen G et al (1995) DNA recombinase activity of eukaryotic DNA topoisomerase I; effects of camptothecin and other inhibitors. Mutat Res 337(2):135–145

    Article  CAS  PubMed  Google Scholar 

  140. Behrendt R, Roers A (2014) Mouse models for Aicardi-Goutières syndrome provide clues to the molecular pathogenesis of systemic autoimmunity. Clin Exp Immunol 175(1):9–16. https://doi.org/10.1111/cei.12147

    Article  CAS  PubMed  Google Scholar 

  141. Lim YW, Sanz LA, Xu X et al (2015) Genome-wide DNA hypomethylation and RNA:DNA hybrid accumulation in Aicardi-Goutières syndrome. elife 4. https://doi.org/10.7554/eLife.08007

  142. Li M, Pokharel S, Wang JT et al (2015) RECQ5-dependent SUMOylation of DNA topoisomerase I prevents transcription-associated genome instability. Nat Commun 6:6720. https://doi.org/10.1038/ncomms7720

    Article  CAS  PubMed  Google Scholar 

  143. Li M, Liu Y (2016) Topoisomerase I in human disease pathogenesis and treatments. Genomics Proteomics Bioinformatics 14(3):166–171. https://doi.org/10.1016/j.gpb.2016.02.004

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sue Jinks-Robertson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cho, JE., Jinks-Robertson, S. (2018). Topoisomerase I and Genome Stability: The Good and the Bad. In: Drolet, M. (eds) DNA Topoisomerases. Methods in Molecular Biology, vol 1703. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7459-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7459-7_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7458-0

  • Online ISBN: 978-1-4939-7459-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics