Skip to main content

Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist’s Approach to Allostery

  • Protocol
  • First Online:
Protein NMR

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1688))

Abstract

Mapping allosteric sites is emerging as one of the central challenges in physiology, pathology, and pharmacology. Nuclear Magnetic Resonance (NMR) spectroscopy is ideally suited to map allosteric sites, given its ability to sense at atomic resolution the dynamics underlying allostery. Here, we focus specifically on the NMR CHEmical Shift Covariance Analysis (CHESCA), in which allosteric systems are interrogated through a targeted library of perturbations (e.g., mutations and/or analogs of the allosteric effector ligand). The atomic resolution readout for the response to such perturbation library is provided by NMR chemical shifts. These are then subject to statistical correlation and covariance analyses resulting in clusters of allosterically coupled residues that exhibit concerted responses to the common set of perturbations. This chapter provides a description of how each step in the CHESCA is implemented, starting from the selection of the perturbation library and ending with an overview of different clustering options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nussinov R, Tsai C (2013) Allostery in disease and in drug discovery. Cell 153(2):293–305

    Article  CAS  PubMed  Google Scholar 

  2. Boulton S, Melacini G (2016) Advances in NMR methods to map allosteric sites: from models to translation. Chem Rev 116(11):6267–6304

    Article  CAS  PubMed  Google Scholar 

  3. Hilser VJ, Wrabl JO, Motlagh HN (2012) Structural and energetic basis of allostery. Annu Rev Biophys 41:585–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuriyan J, Eisenberg D (2007) The origin of protein interactions and allostery in colocalization. Nature 450(7172):983–990

    Article  CAS  PubMed  Google Scholar 

  5. Smock RG, Gierasch LM (2009) Sending signals dynamically. Science 324(5924):198–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nussinov R, Tsai C (2012) The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des 18(9):1311–1316

    Article  CAS  PubMed  Google Scholar 

  7. Wenthur CJ, Gentry PR, Mathews TP et al (2014) Drugs for allosteric sites on receptors. Annu Rev Pharmacol Toxicol 54:165–184

    Article  CAS  PubMed  Google Scholar 

  8. Monod J, Wyman J, Changeux J (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12(1):88–118

    Article  CAS  PubMed  Google Scholar 

  9. Boulton S, Akimoto M, Selvaratnam R et al (2014) A tool set to map allosteric networks through the NMR chemical shift covariance analysis. Sci Rep 4:7306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akimoto M, Selvaratnam R, McNicholl ET et al (2013) Signaling through dynamic linkers as revealed by PKA. Proc Natl Acad Sci U S A 110(35):14231–14236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Selvaratnam R, Chowdhury S, VanSchouwen B et al (2011) Mapping allostery through the covariance analysis of NMR chemical shifts. Proc Natl Acad Sci U S A 108(15):6133–6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Selvaratnam R, Mazhab-Jafari MT, Das R et al (2012) The auto-inhibitory role of the EPAC hinge helix as mapped by NMR. PLoS One 7(11):e48707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cembran A, Kim J, Gao J et al (2014) NMR mapping of protein conformational landscapes using coordinated behavior of chemical shifts upon ligand binding. Phys Chem Chem Phys 16(14):6508–6518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Axe JM, Yezdimer EM, O'Rourke KF et al (2014) Amino acid networks in a (β/α)8 barrel enzyme change during catalytic turnover. J Am Chem Soc 136(19):6818–6821

    Article  CAS  PubMed  Google Scholar 

  15. Williamson MP (2013) Using chemical shift perturbation to characterise ligand binding. Prog Nucl Magn Reson Spectrosc 73:1–16

    Article  CAS  PubMed  Google Scholar 

  16. Selvaratnam R (2013) Probing allostery in the exchange protein activated by cAMP (EPAC) using NMR spectroscopy. Unpublished doctoral thesis, McMaster University, Hamilton, ON, Canada

    Google Scholar 

  17. Selvaratnam R, VanSchouwen B, Fogolari F et al (2012) The projection analysis of NMR chemical shifts reveals extended EPAC autoinhibition determinants. Biophys J 102(3):630–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chatterjee S, Firat A (2007) Generating data with identical statistics but dissimilar graphics. Am Stat 61(3):248–254

    Article  Google Scholar 

  19. Axe JM, O'Rourke KF, Kerstetter NE et al (2015) Severing of a hydrogen bond disrupts amino acid networks in the catalytically active state of the alpha subunit of tryptophan synthase. Protein Sci 24(4):484–494

    Article  CAS  PubMed  Google Scholar 

  20. Axe JM, Boehr DD (2013) Long-range interactions in the alpha subunit of tryptophan synthase help to coordinate ligand binding, catalysis, and substrate channeling. J Mol Biol 425(9):1527–1545

    Article  CAS  PubMed  Google Scholar 

  21. de Hoon MJ, Imoto S, Nolan J et al (2004) Open source clustering software. Bioinformatics 20(9):1453–1454

    Article  PubMed  Google Scholar 

  22. Saldanha AJ (2004) Java treeview–extensible visualization of microarray data. Bioinformatics 20(17):3246–3248

    Article  CAS  PubMed  Google Scholar 

  23. Tomaselli S, Pagano K, Boulton S et al (2015) Lipid binding protein response to a bile acid library: a combined NMR and statistical approach. FEBS J 282(21):4094–4113

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Amir Bashiri (McMaster U.), Dr. M. Akimoto (Keio U.), Professor G. Veglia (U. Minnesota), and L.E. Kay (U. Toronto) for helpful discussions. This study received funding from Canadian Institutes of Health Research (Grant MOP-68897) to G.M. and Natural Sciences and Engineering Research Council of Canada (Grant RGPIN-2014−04514) to G.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Melacini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Boulton, S., Selvaratnam, R., Ahmed, R., Melacini, G. (2018). Implementation of the NMR CHEmical Shift Covariance Analysis (CHESCA): A Chemical Biologist’s Approach to Allostery. In: Ghose, R. (eds) Protein NMR. Methods in Molecular Biology, vol 1688. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7386-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7386-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7385-9

  • Online ISBN: 978-1-4939-7386-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics