Skip to main content

Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

Due to advances in the fields of stem cell biology and cellular engineering, a variety of commercially available human-derived neurons and neural progenitor cells (NPCs) are now available for use in research applications, including small molecule efficacy or toxicity screening. The use of human-derived neural cells is anticipated to address some of the uncertainties associated with the use of nonhuman culture models or transformed cell lines derived from human tissues. Many of the human-derived neurons and NPCs currently available from commercial sources recapitulate critical process of nervous system development including NPC proliferation, neurite outgrowth, synaptogenesis, and calcium signaling, each of which can be evaluated using high content image analysis (HCA). Human-derived neurons and NPCs are also amenable to culture in multiwell plate formats and thus may be adapted for use in HCA-based screening applications. This article reviews various types of HCA-based assays that have been used in conjunction with human-derived neurons and NPC cultures. This article also highlights instances where lower throughput analysis of neurodevelopmental processes has been performed and which demonstrate a potential for adaptation to higher-throughout imaging methods. Finally, a generic protocol for evaluating neurite outgrowth in human-derived neurons using a combination of immunocytochemistry and HCA is presented. The information provided in this article is intended to serve as a resource for cell model and assay selection for those interested in evaluating neurodevelopmental processes in human-derived cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Donato R et al (2007) Differential development of neuronal physiological responsiveness in two human neural stem cell lines. BMC Neurosci 8:36

    Article  Google Scholar 

  2. Le MT et al (2009) MicroRNA-125b promotes neuronal differentiation in human cells by repressing multiple targets. Mol Cell Biol 29(19):5290–5305

    Article  CAS  Google Scholar 

  3. Morgan PJ et al (2009) Protection of neurons derived from human neural progenitor cells by veratridine. Neuroreport 20(13):1225–1229

    Article  CAS  Google Scholar 

  4. Hubner R et al (2010) Differentiation of human neural progenitor cells regulated by Wnt-3a. Biochem Biophys Res Commun 400(3):358–362

    Article  Google Scholar 

  5. Lange C et al (2011) Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 488(1):36–40

    Article  CAS  Google Scholar 

  6. Mazemondet O et al (2011) Quantitative and kinetic profile of Wnt/beta-catenin signaling components during human neural progenitor cell differentiation. Cell Mol Biol Lett 16(4):515–538

    Article  CAS  Google Scholar 

  7. Hernandez-Benitez R et al (2013) Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci 35(1):40–49

    Article  CAS  Google Scholar 

  8. Pai S et al (2012) Dynamic mass redistribution assay decodes differentiation of a neural progenitor stem cell. J Biomol Screen 17(9):1180–1191

    Article  Google Scholar 

  9. Lemcke H, Kuznetsov SA (2013) Involvement of connexin43 in the EGF/EGFR signalling during self-renewal and differentiation of neural progenitor cells. Cell Signal 25(12):2676–2684

    Article  CAS  Google Scholar 

  10. Lemcke H et al (2013) Neuronal differentiation requires a biphasic modulation of gap junctional intercellular communication caused by dynamic changes of connexin43 expression. Eur J Neurosci 38(2):2218–2228

    Article  Google Scholar 

  11. Shahbazi M et al (2013) Inhibitory effects of neural stem cells derived from human embryonic stem cells on differentiation and function of monocyte-derived dendritic cells. J Neurol Sci 330(1–2):85–93

    Article  CAS  Google Scholar 

  12. Zhao X et al (2013) Dual effects of isoflurane on proliferation, differentiation, and survival in human neuroprogenitor cells. Anesthesiology 118(3):537–549

    Article  CAS  Google Scholar 

  13. Shin S et al (2006) Long-term proliferation of human embryonic stem cell-derived neuroepithelial cells using defined adherent culture conditions. Stem Cells 24(1):125–138

    Article  Google Scholar 

  14. Dhara SK et al (2008) Human neural progenitor cells derived from embryonic stem cells in feeder-free cultures. Differentiation 76(5):454–464

    Article  CAS  Google Scholar 

  15. Lai B et al (2008) Endothelium-induced proliferation and electrophysiological differentiation of human embryonic stem cell-derived neuronal precursors. Stem Cells Dev 17(3):565–572

    Article  CAS  Google Scholar 

  16. Dhara SK et al (2009) Genetic manipulation of neural progenitors derived from human embryonic stem cells. Tissue Eng Part A 15(11):3621–3634

    Article  CAS  Google Scholar 

  17. Acharya MM et al (2010) Consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic Biol Med 49(12):1846–1855

    Article  CAS  Google Scholar 

  18. Cheng K, Kisaalita WS (2010) Exploring cellular adhesion and differentiation in a micro−/nano-hybrid polymer scaffold. Biotechnol Prog 26(3):838–846

    Article  CAS  Google Scholar 

  19. Dodla MC et al (2011) Differing lectin binding profiles among human embryonic stem cells and derivatives aid in the isolation of neural progenitor cells. PLoS One 6(8):e23266

    Article  CAS  Google Scholar 

  20. Young A et al (2011) Ion channels and ionotropic receptors in human embryonic stem cell derived neural progenitors. Neuroscience 192:793–805

    Article  CAS  Google Scholar 

  21. Mumaw JL et al (2010) Neural differentiation of human embryonic stem cells at the ultrastructural level. Microsc Microanal 16(1):80–90

    Article  CAS  Google Scholar 

  22. Iyer S et al (2012) Mitochondrial gene replacement in human pluripotent stem cell-derived neural progenitors. Gene Ther 19(5):469–475

    Article  CAS  Google Scholar 

  23. Brennand KJ, Gage FH (2012) Modeling psychiatric disorders through reprogramming. Dis Model Mech 5(1):26–32

    Article  Google Scholar 

  24. Chamberlain SJ et al (2010) Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc Natl Acad Sci U S A 107(41):17668–17673

    Article  CAS  Google Scholar 

  25. Israel MA et al (2012) Probing sporadic and familial Alzheimer’s disease using induced pluripotent stem cells. Nature 482(7384):216–220

    CAS  Google Scholar 

  26. Lee G et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461(7262):402–406

    Article  CAS  Google Scholar 

  27. Xu X et al (2013) Prevention of beta-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of Cyclin-dependent kinases and associated cell cycle events. Stem Cell Res 10(2):213–227

    Article  CAS  Google Scholar 

  28. Yagi T et al (2012) Establishment of induced pluripotent stem cells from centenarians for neurodegenerative disease research. PLoS One 7(7):e41572

    Article  CAS  Google Scholar 

  29. Cheung AY et al (2011) Isolation of MECP2-null Rett syndrome patient hiPS cells and isogenic controls through X-chromosome inactivation. Hum Mol Genet 20(11):2103–2115

    Article  CAS  Google Scholar 

  30. Marchetto MC et al (2010) A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143(4):527–539

    Article  CAS  Google Scholar 

  31. Mak SK et al (2012) Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage. Stem Cells Int 2012:140427

    Article  Google Scholar 

  32. Swistowska AM et al (2010) Stage-specific role for shh in dopaminergic differentiation of human embryonic stem cells induced by stromal cells. Stem Cells Dev 19(1):71–82

    Article  CAS  Google Scholar 

  33. Young A et al (2010) Glial cell line-derived neurotrophic factor enhances in vitro differentiation of mid−/hindbrain neural progenitor cells to dopaminergic-like neurons. J Neurosci Res 88(15):3222–3232

    Article  CAS  Google Scholar 

  34. Seibler P et al (2011) Mitochondrial Parkin recruitment is impaired in neurons derived from mutant PINK1 induced pluripotent stem cells. J Neurosci 31(16):5970–5976

    Article  CAS  Google Scholar 

  35. Nguyen HN et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8(3):267–280

    Article  CAS  Google Scholar 

  36. Byers B et al (2011) SNCA triplication Parkinson’s patient’s iPSC-derived DA neurons accumulate alpha-synuclein and are susceptible to oxidative stress. PLoS One 6(11):e26159

    Article  Google Scholar 

  37. Pasca SP et al (2011) Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat Med 17(12):1657–1662

    Article  CAS  Google Scholar 

  38. Guo X et al (2013) Derivation of sensory neurons and neural crest stem cells from human neural progenitor hNP1. Biomaterials 34(18):4418–4427

    Article  CAS  Google Scholar 

  39. Wada T et al (2009) Highly efficient differentiation and enrichment of spinal motor neurons derived from human and monkey embryonic stem cells. PLoS One 4(8):e6722

    Article  Google Scholar 

  40. Ebert AD et al (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457(7227):277–280

    Article  CAS  Google Scholar 

  41. Mitne-Neto M et al (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20(18):3642–3652

    Article  CAS  Google Scholar 

  42. Lee G et al (2012) Large-scale screening using familial dysautonomia induced pluripotent stem cells identifies compounds that rescue IKBKAP expression. Nat Biotechnol 30(12):1244–1248

    Article  CAS  Google Scholar 

  43. Culbreth ME et al (2012) Comparison of chemical-induced changes in proliferation and apoptosis in human and mouse neuroprogenitor cells. Neurotoxicology 33(6):1499–1510

    Article  CAS  Google Scholar 

  44. Breier JM et al (2008) Development of a high-throughput screening assay for chemical effects on proliferation and viability of immortalized human neural progenitor cells. Toxicol Sci 105(1):119–133

    Article  CAS  Google Scholar 

  45. Jaeger A et al (2013) Glycogen synthase kinase-3beta regulates differentiation-induced apoptosis of human neural progenitor cells. Int J Dev Neurosci 31(1):61–68

    Article  CAS  Google Scholar 

  46. Li N et al (2010) Prosaposin in the secretome of marrow stroma-derived neural progenitor cells protects neural cells from apoptotic death. J Neurochem 112(6):1527–1538

    Article  CAS  Google Scholar 

  47. Chaudhry ZL, Ahmed BY (2013) Caspase-2 and caspase-8 trigger caspase-3 activation following 6-OHDA-induced stress in human dopaminergic neurons differentiated from ReNVM stem cells. Neurol Res 35(4):435–440

    Article  CAS  Google Scholar 

  48. Diaz-Coranguez M et al (2013) Transmigration of neural stem cells across the blood brain barrier induced by glioma cells. PLoS One 8(4):e60655

    Article  CAS  Google Scholar 

  49. Harrill JA et al (2010) Quantitative assessment of neurite outgrowth in human embryonic stem cell-derived hN2 cells using automated high-content image analysis. Neurotoxicology 31(3):277–290

    Article  Google Scholar 

  50. Harrill JA et al (2011) Comparative sensitivity of human and rat neural cultures to chemical-induced inhibition of neurite outgrowth. Toxicol Appl Pharmacol 256(3):268–280

    Article  CAS  Google Scholar 

  51. Gill JK et al (2013) Contrasting properties of alpha7-selective orthosteric and allosteric agonists examined on native nicotinic acetylcholine receptors. PLoS One 8(1):e55047

    Article  CAS  Google Scholar 

  52. Wu ZZ et al (2010) Effects of topography on the functional development of human neural progenitor cells. Biotechnol Bioeng 106(4):649–659

    Article  CAS  Google Scholar 

  53. Harry GJ, Tiffany-Castiglioni E (2005) Evaluation of neurotoxic potential by use of in vitro systems. Expert Opin Drug Metab Toxicol 1(4):701–713

    Article  CAS  Google Scholar 

  54. Comley J 2013 Stem cells rapidly gaining traction in research and drug discovery. Accessed 21 Dec 2016 http://www.ddw-online.com/therapeutics/p213497-stem-cells-rapidly-gaining- traction-in-research-and-drugdiscoverysummer-13.html

  55. BioInformant Worldwide, LLC (2016) Strategic development of neural stem and progenitor cell products. Biotechnology 2013 November 2013. Accessed 21 Dec 2016 https://www.bioinformant.com/launching-march-2016-strategic-development-of-neural-stem-and-progenitor-cellproducts/

  56. Dage J, K Merchant (2012) The application of iPS cells and differentiated neuronal cells to advance drug discovery. Accessed 21 Dec 2016 http://www.ddw-online.com/therapeutics/p149535-the-application-of-ips-cells-and-differentiated-neuronal-cellsto-advance-drug-discovery-summer-12.html

  57. Goldman SA, Sim F (2005) Neural progenitor cells of the adult brain. Novartis Found Symp 265:66–80. discussion 82–97

    Article  CAS  Google Scholar 

  58. Mokry J, Karbanova J, Filip S (2005) Differentiation potential of murine neural stem cells in vitro and after transplantation. Transplant Proc 37(1):268–272

    Article  CAS  Google Scholar 

  59. Deleyrolle LP, Reynolds BA (2009) Isolation, expansion, and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay. Methods Mol Biol 549:91–101

    Article  CAS  Google Scholar 

  60. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710

    Article  CAS  Google Scholar 

  61. Thomson JA et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282(5391):1145–1147

    Article  CAS  Google Scholar 

  62. Shi Y et al (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3(5):568–574

    Article  CAS  Google Scholar 

  63. Yu J et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318(5858):1917–1920

    Article  CAS  Google Scholar 

  64. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  Google Scholar 

  65. Huangfu D et al (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26(7):795–797

    Article  CAS  Google Scholar 

  66. Hou P et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654

    Article  CAS  Google Scholar 

  67. Badja C et al (2014) Efficient and cost-effective generation of mature neurons from human induced pluripotent stem cells. Stem Cells Transl Med 3(12):1467–1472

    Article  CAS  Google Scholar 

  68. Kim DS et al (2012) Highly pure and expandable PSA-NCAM-positive neural precursors from human ESC and iPSC-derived neural rosettes. PLoS One 7(7):e39715

    Article  CAS  Google Scholar 

  69. Yan Y et al (2013) Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl Med 2(11):862–870

    Article  CAS  Google Scholar 

  70. Stover AE et al (2013) Process-based expansion and neural differentiation of human pluripotent stem cells for transplantation and disease modeling. J Neurosci Res 91(10):1247–1262

    Article  CAS  Google Scholar 

  71. D'Aiuto L et al (2014) Large-scale generation of human iPSC-derived neural stem cells/early neural progenitor cells and their neuronal differentiation. Organogenesis 10(4):365–377

    Article  Google Scholar 

  72. Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8(4):1454–1468

    CAS  Google Scholar 

  73. de Lima AD, Merten MD, Voigt T (1997) Neuritic differentiation and synaptogenesis in serum-free neuronal cultures of the rat cerebral cortex. J Comp Neurol 382(2):230–246

    Article  Google Scholar 

  74. Lowenstein PR et al (1995) Synaptogenesis and distribution of presynaptic axonal varicosities in low density primary cultures of neocortex: an immunocytochemical study utilizing synaptic vesicle-specific antibodies, and an electrophysiological examination utilizing whole cell recording. J Neurocytol 24(4):301–317

    Article  CAS  Google Scholar 

  75. Basarsky TA, Parpura V, Haydon PG (1994) Hippocampal synaptogenesis in cell culture: developmental time course of synapse formation, calcium influx, and synaptic protein distribution. J Neurosci 14(11 Pt 1):6402–6411

    CAS  Google Scholar 

  76. Latchney SE et al (2011) Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Stem Cells Dev 20(2):313–326

    Article  CAS  Google Scholar 

  77. Schreiber T et al (2010) Polybrominated diphenyl ethers induce developmental neurotoxicity in a human in vitro model: evidence for endocrine disruption. Environ Health Perspect 118(4):572–578

    Article  CAS  Google Scholar 

  78. Schopperle WM, DeWolf WC (2007) The TRA-1-60 and TRA-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells 25(3):723–730

    Article  CAS  Google Scholar 

  79. Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407(6805):802–809

    Article  CAS  Google Scholar 

  80. Lei X, Guo Q, Zhang J (2012) Mechanistic insights into neurotoxicity induced by anesthetics in the developing brain. Int J Mol Sci 13(6):6772–6799

    Article  CAS  Google Scholar 

  81. Behl C (2000) Apoptosis and Alzheimer's disease. J Neural Transm (Vienna) 107(11):1325–1344

    Article  CAS  Google Scholar 

  82. Shimohama S (2000) Apoptosis in Alzheimer’s disease—an update. Apoptosis 5(1):9–16

    Article  CAS  Google Scholar 

  83. Shen Y, White E (2001) p53-dependent apoptosis pathways. Adv Cancer Res 82:55–84

    Article  CAS  Google Scholar 

  84. Vermes I et al (1995) A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 184(1):39–51

    Article  CAS  Google Scholar 

  85. Walton M et al (1997) Annexin V labels apoptotic neurons following hypoxia-ischemia. Neuroreport 8(18):3871–3875

    Article  CAS  Google Scholar 

  86. Martin HL et al (2014) High-content, high-throughput screening for the identification of cytotoxic compounds based on cell morphology and cell proliferation markers. PLoS One 9(2):e88338

    Article  Google Scholar 

  87. Caceres A, Banker GA, Binder L (1986) Immunocytochemical localization of tubulin and microtubule-associated protein 2 during the development of hippocampal neurons in culture. J Neurosci 6(3):714–722

    CAS  Google Scholar 

  88. Barnes AP, Polleux F (2009) Establishment of axon-dendrite polarity in developing neurons. Annu Rev Neurosci 32:347–381

    Article  CAS  Google Scholar 

  89. Harrill JA et al (2013) Use of high content image analyses to detect chemical-mediated effects on neurite sub-populations in primary rat cortical neurons. Neurotoxicology 34:61–73

    Article  CAS  Google Scholar 

  90. Harrill JA et al (2015) Ontogeny of biochemical, morphological and functional parameters of synaptogenesis in primary cultures of rat hippocampal and cortical neurons. Mol Brain 8:10

    Article  Google Scholar 

  91. Harrill JA, Robinette BL, Mundy WR (2011) Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol In Vitro 25(1):368–387

    Article  CAS  Google Scholar 

  92. Fletcher TL et al (1991) The distribution of synapsin I and synaptophysin in hippocampal neurons developing in culture. J Neurosci 11(6):1617–1626

    CAS  Google Scholar 

  93. Kawamoto EM, Vivar C, Camandola S (2012) Physiology and pathology of calcium signaling in the brain. Front Pharmacol 3:61

    Article  Google Scholar 

  94. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    Article  CAS  Google Scholar 

  95. Nicholson DW (1999) Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ 6(11):1028–1042

    Article  CAS  Google Scholar 

  96. Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22(56):9030–9040

    Article  CAS  Google Scholar 

  97. Mundy WR, Radio NM, Freudenrich TM (2010) Neuronal models for evaluation of proliferation in vitro using high content screening. Toxicology 270(2–3):121–130

    Article  CAS  Google Scholar 

  98. Buchser W et al (2004) Assay development guidelines for image-based high content screening, high content analysis and high content imaging. In: Sittampalam GS et al (eds) Assay guidance manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD

    Google Scholar 

  99. Ljosa V, Carpenter AE (2009) Introduction to the quantitative analysis of two-dimensional fluorescence microscopy images for cell-based screening. PLoS Comput Biol 5(12):e1000603

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. William Mundy and Dr. Timothy Shafer for their advice and technical assistance regarding this work. The author would also like to thank the editors, O. Joseph Trask and Peter O'Brien, for their insightful comments on earlier versions of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Harrill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Harrill, J.A. (2018). Human-Derived Neurons and Neural Progenitor Cells in High Content Imaging Applications. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics