Skip to main content

Evaluating Nanomedicines: Obstacles and Advancements

  • Protocol
  • First Online:
Characterization of Nanoparticles Intended for Drug Delivery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1682))

Abstract

Continued advancements in nanotechnology are expanding the boundaries of medical research, most notably as drug delivery agents for treatment against cancer. Drug delivery with nanotechnology can offer greater control over the biodistribution of therapeutic agents to improve the therapeutic index. In the last 20 years, a number of nanomedicines have transitioned into the clinic. As nanomedicines evolve, techniques to properly evaluate their safety and efficacy must also evolve. Characterization methods for nano-based materials must be adapted to the demands of nanomedicine developers and regulators. This second edition book provides updated characterization protocols designed to address the clinical potential of nanomedicines during their preclinical development. In this chapter, the characterization challenges of nanoparticles intended for drug delivery will be discussed, along with examples of advancements and improvements in nanomedicine characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373. https://doi.org/10.2147/IJN.S46900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Anselmo AC, Mitragotri S (2016) Nanoparticles in the clinic. Bioeng Transl Med 1(1):10–29. https://doi.org/10.1002/btm2.10003

    Google Scholar 

  3. Havel HA (2016) Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials. AAPS J 18(6):1351–1353. https://doi.org/10.1208/s12248-016-9970-6

    Article  CAS  PubMed  Google Scholar 

  4. Boswell GW, Buell D, Bekersky I (1998) AmBisome (Liposomal Amphotericin B): a comparative review. J Clin Pharmacol 38(7):583–592. https://doi.org/10.1002/j.1552-4604.1998.tb04464.x

    Article  CAS  PubMed  Google Scholar 

  5. Shi J, Kantoff PW, Wooster R, Farokhzad OC (2017) Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 17(1):20–37. https://doi.org/10.1038/nrc.2016.108

    Article  CAS  PubMed  Google Scholar 

  6. Barenholz Y (2012) Doxil®—the first FDA-approved nano-drug: lessons learned. J Control Release 160(2):117–134. https://doi.org/10.1016/j.jconrel.2012.03.020

    Article  CAS  PubMed  Google Scholar 

  7. Grossman JH, Crist RM, Clogston JD (2017) Early development challenges for drug products containing nanomaterials. AAPS J 19(1):92–102. https://doi.org/10.1208/s12248-016-9980-4

    Article  CAS  PubMed  Google Scholar 

  8. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Part 1):6387–6392

    CAS  PubMed  Google Scholar 

  9. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65(1–2):271–284. https://doi.org/10.1016/S0168-3659(99)00248-5

    Article  CAS  PubMed  Google Scholar 

  10. Gabizon A, Catane R, Uziely B, Kaufman B, Safra T, Cohen R, Martin F, Huang A, Barenholz Y (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54(4):987–992

    CAS  PubMed  Google Scholar 

  11. (2016) Celator Pharmaceuticals® presented phase 3 trial results in patients with high-risk acute myeloid leukemia demonstrating VYXEOS™ (CPX-351) significantly improved overall survival. Ewing, NJ. http://www.prnewswire.com/news-releases/celator-announces-phase-3-trial-for-vyxeos-cpx-351-in-patients-with-high-risk-acute-myeloid-leukemia-demonstrates-statistically-significant-improvement-in-overall-survival-300235620.html

  12. Prabhakar U, Maeda H, Jain RK, Sevick-Muraca EM, Zamboni W, Farokhzad OC, Barry ST, Gabizon A, Grodzinski P, Blakey DC (2013) Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73(8):2412–2417. https://doi.org/10.1158/0008-5472.can-12-4561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Adiseshaiah PP, Crist RM, Hook SS, McNeil SE (2016) Nanomedicine strategies to overcome the pathophysiological barriers of pancreatic cancer. Nat Rev Clin Oncol 13(12):750–765. https://doi.org/10.1038/nrclinonc.2016.119

    Article  CAS  PubMed  Google Scholar 

  14. Chauhan VP, Jain RK (2013) Strategies for advancing cancer nanomedicine. Nat Mater 12(11):958–962. https://doi.org/10.1038/nmat3792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hrkach J, Von Hoff D, Mukkaram Ali M, Andrianova E, Auer J, Campbell T, De Witt D, Figa M, Figueiredo M, Horhota A, Low S, McDonnell K, Peeke E, Retnarajan B, Sabnis A, Schnipper E, Song JJ, Song YH, Summa J, Tompsett D, Troiano G, Van Geen HT, Wright J, LoRusso P, Kantoff PW, Bander NH, Sweeney C, Farokhzad OC, Langer R, Zale S (2012) Preclinical development and clinical translation of a PSMA-targeted docetaxel nanoparticle with a differentiated pharmacological profile. Sci. Transl. Med 4(128):128ra139. https://doi.org/10.1126/scitranslmed.3003651

    Article  Google Scholar 

  16. Kamoun WS, Luus L, Pien C, Kornaga T, Oyama S, Huang ZR, Tipparaju S, Kirpotin DB, Marks JD, Koshkaryev A, Geddie M, Xu L, Lugovosky A, Drummond DC (2016) Abstract 871: nanoliposomal targeting of ephrin receptor A2 (EphA2): preclinical in vitro and in vivo rationale. Cancer Res 76(14 Supplement):871–871. https://doi.org/10.1158/1538-7445.am2016-871

    Article  Google Scholar 

  17. Kirpotin DB, Tipparaju S, Huang ZR, Kamoun WS, Pien C, Kornaga T, Oyama S, Olivier K, Marks JD, Koshkaryev A, Schihl SS, Fetterly G, Schoeberl B, Noble C, Hayes M, Drummond DC (2016) Abstract 3912: MM-310, a novel EphA2-targeted docetaxel nanoliposome. Cancer Res 76(14 Supplement):3912–3912. https://doi.org/10.1158/1538-7445.am2016-3912

    Article  Google Scholar 

  18. Davis ME, Zuckerman JE, Choi CHJ, Seligson D, Tolcher A, Alabi CA, Yen Y, Heidel JD, Ribas A (2010) Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464(7291):1067–1070. https://doi.org/10.1038/nature08956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Smith DM, Simon JK, Baker JR Jr (2013) Applications of nanotechnology for immunology. Nat Rev Immunol 13(8):592–605. https://doi.org/10.1038/nri3488

    Article  CAS  PubMed  Google Scholar 

  20. Swartz MA, Hirosue S, Hubbell JA (2012) Engineering approaches to immunotherapy. Sci Transl Med 4(148):148rv9. https://doi.org/10.1126/scitranslmed.3003763

    Article  PubMed  Google Scholar 

  21. Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15(1):253–282. https://doi.org/10.1146/annurev-bioeng-071812-152409

    Article  CAS  PubMed  Google Scholar 

  22. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12(11):991–1003. https://doi.org/10.1038/nmat3776

    Article  CAS  PubMed  Google Scholar 

  23. van Elk M, Murphy BP, Eufrásio-da-Silva T, O’Reilly DP, Vermonden T, Hennink WE, Duffy GP, Ruiz-Hernández E (2016) Nanomedicines for advanced cancer treatments: transitioning towards responsive systems. Int J Pharm 515(1–2):132–164. https://doi.org/10.1016/j.ijpharm.2016.10.013

    Article  PubMed  Google Scholar 

  24. Bressler NM, Bressler SB (2000) Photodynamic therapy with verteporfin (visudyne): impact on ophthalmology and visual sciences. Invest Ophthalmol Vis Sci 41(3):624–628

    CAS  PubMed  Google Scholar 

  25. Landon CD, Park JY, Needham D, Dewhirst MW (2011) Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 3:38–64. https://doi.org/10.2174/1875933501103010038

    Article  PubMed  PubMed Central  Google Scholar 

  26. Crist RM, Grossman JH, Patri AK, Stern ST, Dobrovolskaia MA, Adiseshaiah PP, Clogston JD, McNeil SE (2013) Common pitfalls in nanotechnology: lessons learned from NCI’s nanotechnology characterization laboratory. Integr Biol (Camb) 5(1):66–73. https://doi.org/10.1039/c2ib20117h

    Article  CAS  Google Scholar 

  27. Dobrovolskaia MA, Neun BW, Clogston JD, Grossman JH, McNeil SE (2014) Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine (Lond) 9(12):1847–1856. https://doi.org/10.2217/nnm.13.157

    Article  CAS  Google Scholar 

  28. Dobrovolskaia MA, Patri AK, Potter TM, Rodriguez JC, Hall JB, McNeil SE (2012) Dendrimer-induced leukocyte procoagulant activity depends on particle size and surface charge. Nanomedicine (Lond) 7(2):245–256. https://doi.org/10.2217/nnm.11.105

    Article  CAS  Google Scholar 

  29. McNeil SE (ed) (2011) Characterization of nanoparticles intended for drug delivery, Methods in molecular biology, vol 697. Humana Press, New York. https://doi.org/10.1007/978-1-60327-198-1

    Google Scholar 

  30. Smith DA, Schmid EF (2006) Drug withdrawals and the lessons within. Curr Opin Drug Discov Devel 9(1):38–46

    CAS  PubMed  Google Scholar 

  31. Wysowski DK, Nourjah P (2004) Analyzing prescription drugs as causes of death on death certificates. Public Health Rep 119(6):520. https://doi.org/10.1016/j.phr.2004.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dobrovolskaia MA, McNeil SE (2007) Immunological properties of engineered nanomaterials. Nat Nanotechnol 2(8):469–478

    Article  CAS  PubMed  Google Scholar 

  33. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I, Giacomini KM, Krauss RM (2007) Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 6(11):904–916. https://doi.org/10.1038/nrd2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wysowski DK, Swartz L (2005) Adverse drug event surveillance and drug withdrawals in the United States, 1969-2002: the importance of reporting suspected reactions. Arch Intern Med 165(12):1363–1369. https://doi.org/10.1001/archinte.165.12.1363

    Article  PubMed  Google Scholar 

  35. Dobrovolskaia MA, McNeil SE (2013) Understanding the correlation between in vitro and in vivo immunotoxicity tests for nanomedicines. J Control Release 172(2):456–466. https://doi.org/10.1016/j.jconrel.2013.05.025

    Article  CAS  PubMed  Google Scholar 

  36. Dobrovolskaia MA (2015) Pre-clinical immunotoxicity studies of nanotechnology-formulated drugs: challenges, considerations and strategy. J Control Release 220(Pt B):571–583. https://doi.org/10.1016/j.jconrel.2015.08.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Szebeni J, Muggia F, Gabizon A, Barenholz Y (2011) Activation of complement by therapeutic liposomes and other lipid excipient-based therapeutic products: prediction and prevention. Adv Drug Deliv Rev 63(12):1020–1030. https://doi.org/10.1016/j.addr.2011.06.017

    Article  CAS  PubMed  Google Scholar 

  38. Skoczen S, McNeil SE, Stern ST (2015) Stable isotope method to measure drug release from nanomedicines. J Control Release 220:169–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Adiseshaiah PP, Hall JB, McNeil SE (2010) Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2(1):99–112. https://doi.org/10.1002/wnan.66

    Article  CAS  PubMed  Google Scholar 

  40. Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405. https://doi.org/10.1016/j.jconrel.2015.07.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott E. McNeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Swierczewska, M., Crist, R.M., McNeil, S.E. (2018). Evaluating Nanomedicines: Obstacles and Advancements. In: McNeil, S. (eds) Characterization of Nanoparticles Intended for Drug Delivery. Methods in Molecular Biology, vol 1682. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7352-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7352-1_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7350-7

  • Online ISBN: 978-1-4939-7352-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics