Skip to main content

Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP)

  • Protocol
  • First Online:
Plant Chromatin Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1675))

Abstract

Identification of chromatin modifications, e.g., histone acetylation and methylation, among others, is widely carried out by using a chromatin immunoprecipitation (ChIP) strategy. The information obtained with these procedures is useful to gain an overall picture of modifications present in all cells of the population under study. It also serves as a basis to figure out the mechanisms of chromatin organization and gene regulation at the population level. However, the ultimate goal is to understand gene regulation at the level of single chromatin fibers. This requires the identification of chromatin modifications that occur at a given genomic location and within the same chromatin fiber. This is achieved by following a sequential ChIP strategy using two antibodies to distinguish different chromatin modifications. Here, we describe a sequential ChIP protocol (Re-ChIP), paying special attention to the controls needed and the required steps to obtain meaningful and reproducible results. The protocol is developed for young Arabidopsis seedlings but could be adapted to other plant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  2. Sequeira-Mendes J, Araguez I, Peiro R, Mendez-Giraldez R, Zhang X, Jacobsen SE, Bastolla U, Gutierrez C (2014) The functional topography of the arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26:2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sequeira-Mendes J, Gutierrez C (2016) Genome architecture: from linear organisation of chromatin to the 3D assembly in the nucleus. Chromosoma 125:455–469

    Article  CAS  PubMed  Google Scholar 

  4. Bowler C, Benvenuto G, Laflamme P, Molino D, Probst AV, Tariq M, Paszkowski J (2004) Chromatin techniques for plant cells. Plant J 39:776–789

    Article  CAS  PubMed  Google Scholar 

  5. Villar CB, Kohler C (2010) Plant chromatin immunoprecipitation. Methods Mol Biol 655:401–411

    Article  CAS  PubMed  Google Scholar 

  6. Malapeira J, Khaitova LC, Mas P (2012) Ordered changes in histone modifications at the core of the Arabidopsis circadian clock. Proc Natl Acad Sci U S A 109:21540–21545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem Sci 25:99–104

    Article  CAS  PubMed  Google Scholar 

  8. Yamaguchi N, Winter CM, Wu MF, Kwon CS, William DA, Wagner D (2014) PROTOCOLS: chromatin immunoprecipitation from arabidopsis tissues. Arabidopsis book 12:e0170

    Article  PubMed  PubMed Central  Google Scholar 

  9. Desvoyes B, Vergara Z, Sequeira-Mendes J, Madeira S, Gutierrez C (2017) A rapid and efficient ChIP protocol to profile chromatin binding proteins and epigenetic modifications in Arabidopsis. Methods Mol Biol 1675. doi:10.1007/978-1-4939-7318-7_5

  10. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  CAS  PubMed  Google Scholar 

  11. Roh TY, Cuddapah S, Cui K, Zhao K (2006) The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci U S A 103:15782–15787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang D, Wang Y, Wang Y, He Y (2008) Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the arabidopsis polycomb repressive complex 2 components. PLoS One 3:e3404

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crisanto Gutierrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Desvoyes, B., Sequeira-Mendes, J., Vergara, Z., Madeira, S., Gutierrez, C. (2018). Sequential ChIP Protocol for Profiling Bivalent Epigenetic Modifications (ReChIP). In: Bemer, M., Baroux, C. (eds) Plant Chromatin Dynamics. Methods in Molecular Biology, vol 1675. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7318-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7318-7_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7317-0

  • Online ISBN: 978-1-4939-7318-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics