Skip to main content

Multiplex Genome Editing in Escherichia coli

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

Lambda Red recombineering is an easy and efficient method for generating genetic modifications in Escherichia coli. For gene deletions, lambda Red recombineering is combined with the use of selectable markers, which are removed through the action of, e.g., flippase (Flp) recombinase. This PCR-based engineering method has also been applied to a number of other bacteria. In this chapter, we describe a recently developed one plasmid-based method as well as the use of a strain with genomically integrated recombineering genes, which significantly speeds up the engineering of strains with multiple genomic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karu AE, Sakaki Y, Echols H, Linn S (1975) The gamma protein specified by bacteriophage gamma. Structure and inhibitory activity for the recBC enzyme of Escherichia coli. J Biol Chem 250(18):7377–7387

    CAS  PubMed  Google Scholar 

  2. Murphy KC (1991) Lambda gam protein inhibits the helicase and chi-stimulated recombination activities of Escherichia coli RecBCD enzyme. J Bacteriol 173(18):5808–5821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kulkarni SK, Stahl FW (1989) Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda. Genetics 123(2):249–253

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Subramanian K, Rutvisuttinunt W, Scott W, Myers RS (2003) The enzymatic basis of processivity in lambda exonuclease. Nucleic Acids Res 31(6):1585–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Little JW (1967) An exonuclease induced by bacteriophage lambda. II Nature of the enzymatic reaction. J Biol Chem 242(4):679–686

    CAS  PubMed  Google Scholar 

  6. Karakousis G, Ye N, Li Z, Chiu SK, Reddy G, Radding CM (1998) The beta protein of phage lambda binds preferentially to an intermediate in DNA renaturation. J Mol Biol 276(4):721–731. doi:10.1006/jmbi.1997.1573

    Article  CAS  PubMed  Google Scholar 

  7. Kmiec E, Holloman WK (1981) Beta protein of bacteriophage lambda promotes renaturation of DNA. J Biol Chem 256(24):12636–12639

    CAS  PubMed  Google Scholar 

  8. Radding CM, Rosensweig J, Richards F, Cassuto E (1971) Separation and characterization of exonuclease B protein, and a complex of both. J Biol Chem 246:2510–2512

    CAS  Google Scholar 

  9. Yu D, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A 97(11):5978–5983. doi:10.1073/pnas.100127597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu D, Sawitzke JA, Ellis H, Court DL (2003) Recombineering with overlapping single-stranded DNA oligonucleotides: testing a recombination intermediate. Proc Natl Acad Sci U S A 100(12):7207–7212. doi:10.1073/pnas.1232375100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4(2):206–223. doi:10.1038/nprot.2008.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maresca M, Erler A, Fu J, Friedrich A, Zhang Y, Stewart AF (2010) Single-stranded heteroduplex intermediates in lambda Red homologous recombination. BMC Mol Biol 11:54. doi:10.1186/1471-2199-11-54

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mosberg JA, Lajoie MJ, Church GM (2010) Lambda Red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics 186(3):791–799. doi:10.1534/genetics.110.120782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jensen SI, Lennen RM, Herrgard MJ, Nielsen AT (2015) Seven gene deletions in seven days: fast generation of Escherichia coli strains tolerant to acetate and osmotic stress. Sci Rep 5:17874. doi:10.1038/srep17874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cherepanov PP, Wackernagel W (1995) Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158(1):9–14

    Article  CAS  PubMed  Google Scholar 

  16. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645. doi:10.1073/pnas.120163297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cox MM (1983) The FLP protein of the yeast 2-microns plasmid: expression of a eukaryotic genetic recombination system in Escherichia coli. Proc Natl Acad Sci U S A 80(14):4223–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gronostajski RM, Sadowski PD (1985) The FLP protein of the 2-micron plasmid of yeast. Inter- and intramolecular reactions. J Biol Chem 260(22):12328–12335

    CAS  PubMed  Google Scholar 

  19. Senecoff JF, Bruckner RC, Cox MM (1985) The FLP recombinase of the yeast 2-micron plasmid: characterization of its recombination site. Proc Natl Acad Sci U S A 82(21):7270–7274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yamamoto N, Nakahigashi K, Nakamichi T, Yoshino M, Takai Y, Touda Y, Furubayashi A, Kinjyo S, Dose H, Hasegawa M, Datsenko KA, Nakayashiki T, Tomita M, Wanner BL, Mori H (2009) Update on the Keio collection of Escherichia coli single-gene deletion mutants. Mol Syst Biol 5:335. doi:10.1038/msb.2009.92

    Article  PubMed  PubMed Central  Google Scholar 

  21. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008. doi:10.1038/msb4100050

    PubMed  Google Scholar 

  22. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou J, Rudd KE (2013) EcoGene 3.0. Nucleic Acids Res 41(Database issue):D613–D624. doi:10.1093/nar/gks1235

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The development of the methods described in this chapter was obtained through funding from the Novo Nordisk Foundation. pKD3, pKD4, pSIJ8, and strain SIJ488 are all available from Addgene. Other plasmids are available upon request from the authors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheila Ingemann Jensen or Alex Toftgaard Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Jensen, S.I., Nielsen, A.T. (2018). Multiplex Genome Editing in Escherichia coli . In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_8

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics