Skip to main content

Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast

  • Protocol
Synthetic Metabolic Pathways

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1671))

Abstract

In cell factory development, screening procedures, often relying on low-throughput analytical methods, are lagging far behind diversity generation methods. This renders the identification and selection of the best cell factory designs tiresome and costly, conclusively hindering the manufacturing process. In the yeast Saccharomyces cerevisiae, implementation of allosterically regulated transcription factors from prokaryotes as metabolite biosensors has proven a valuable strategy to alleviate this screening bottleneck. Here, we present a protocol to select and incorporate prokaryotic transcriptional activators as metabolite biosensors in S. cerevisiae. As an example, we outline the engineering and characterization of the LysR-type transcriptional regulator (LTTR) family member BenM from Acetinobacter sp. ADP1 for monitoring accumulation of cis,cis-muconic acid, a bioplast precursor, in yeast by means of flow cytometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang F, Keasling J (2011) Biosensors and their applications in microbial metabolic engineering. Trends Microbiol 19(7):323–329. doi:10.1016/j.tim.2011.05.003

    Article  CAS  PubMed  Google Scholar 

  2. Zhang J, Jensen MK, Keasling JD (2015) Development of biosensors and their application in metabolic engineering. Curr Opin Chem Biol 28:1–8. doi:10.1016/j.cbpa.2015.05.013

    Article  PubMed  Google Scholar 

  3. Rogers JK, Taylor ND, Church GM (2016) Biosensor-based engineering of biosynthetic pathways. Curr Opin Biotechnol 42:84–91. doi:10.1016/j.copbio.2016.03.005

    Article  CAS  PubMed  Google Scholar 

  4. Zhang C, Wei ZH, Ye BC (2013) Imaging and tracing of intracellular metabolites utilizing genetically encoded fluorescent biosensors. Biotechnol J 8(11):1280–1291. doi:10.1002/biot.201300001

    Article  CAS  PubMed  Google Scholar 

  5. Liu D, Evans T, Zhang F (2015) Applications and advances of metabolite biosensors for metabolic engineering. Metab Eng 31:15–22. doi:10.1016/j.ymben.2015.06.008

    Google Scholar 

  6. Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors (Basel) 13(5):5777–5795. doi:10.3390/s130505777

    Article  CAS  Google Scholar 

  7. Mahr R, Frunzke J (2016) Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 100(1):79–90. doi:10.1007/s00253-015-7090-3

    Article  CAS  PubMed  Google Scholar 

  8. Stanton BC, Nielsen AAK, Tamsir A, Clancy K, Peterson T, Voigt CA (2014) Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat Chem Biol 10(2):99–105. doi:10.1038/nchembio.1411

    Article  CAS  PubMed  Google Scholar 

  9. Ramos JL, Martinez-Bueno M, Molina-HenaresAJ, Tera W, Brennan R, Tobes R (2005) The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69(2):1–31. doi:10.1128/MMBR.69.2.326

  10. Baron U, Bujard H (2000) Tet repressor-based system for regulated gene expression in eukaryotic cells: principles and advances. Methods Enzymol 327:401–421. doi:10.1016/S0076-6879(00)27292-3

    Article  CAS  PubMed  Google Scholar 

  11. Bertram R, Hillen W (2008) The application of Tet repressor in prokaryotic gene regulation and expression. Microb Biotechnol 1(1):2–16. doi:10.1111/j.1751-7915.2007.00001.x

    CAS  PubMed  Google Scholar 

  12. Aleksandrov A, Schuldt L, Hinrichs W, Simonson T (2009) Tetracycline-Tet repressor binding specificity: insights from experiments and simulations. Biophys J 97(10):2829–2838. doi:10.1016/j.bpj.2009.08.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. David F, Nielsen J, Siewers V (2016) Flux control at the Malonyl-CoA node through hierarchical dynamic pathway regulation in Saccharomyces cerevisiae. ACS Synth Biol 5(3):224–233. doi:10.1021/acssynbio.5b00161

    Article  CAS  PubMed  Google Scholar 

  14. Li S, Si T, Wang M, Zhao H (2015) Development of a synthetic Malonyl-CoA sensor in Saccharomyces cerevisiae for intracellular metabolite monitoring and genetic screening. ACS Synth Biol 4(12):1308–1315. doi:10.1021/acssynbio.5b00069

    Article  CAS  PubMed  Google Scholar 

  15. Teo WS, Chang MW (2015) Bacterial XylRs and synthetic promoters function as genetically encoded xylose biosensors in Saccharomyces cerevisiae. Biotechnol J 10(2):315–322. doi:10.1002/biot.201400159

    Article  CAS  PubMed  Google Scholar 

  16. Skjoedt ML, Snoek T et al (2016) Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast. Nat Chem Biol 12(11):951–958

    Article  CAS  PubMed  Google Scholar 

  17. Curran KA, Leavitt JM, Karim AS, Alper HS (2013) Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab Eng 15(1):55–66. doi:10.1016/j.ymben.2012.10.003

    Article  CAS  PubMed  Google Scholar 

  18. Collier LS, Gaines GL, Neidle EL (1998) Regulation of benzoate degradation in Acinetobacter sp. strain ADP1 by BenM, a LysR-type transcriptional activator. J Bacteriol 180(9):2493–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bundy BM, Collier LS, Hoover TR, Neidle EL (2002) Synergistic transcriptional activation by one regulatory protein in response to two metabolites. Proc Natl Acad Sci U S A 99(11):7693–7698. doi:10.1073/pnas.102605799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jensen NB, Strucko T, Kildegaard KR, David F, Maury J, Mortensen UH, Forster J, Nielsen J, Borodina I (2014) EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae. FEMS Yeast Res 14(2):238–248. doi:10.1111/1567-1364.12118

    Article  CAS  PubMed  Google Scholar 

  21. McIsaac RS, Gibney PA, Chandran SS, Benjamin KR, Botstein D (2014) Synthetic biology tools for programming gene expression without nutritional perturbations in Saccharomyces cerevisiae. Nucleic Acids Res 42(6):1–8. doi:10.1093/nar/gkt1402

    Article  Google Scholar 

  22. Mikkelsen MD et al (2012) Microbial production of indolylglucosinolate through engineering of a multi-gene pathway in a versatile yeast expression platform. Metab Eng 14(2):104–111

    Article  CAS  PubMed  Google Scholar 

  23. Balleza E, López-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI, Encarnación S, Collado-Vides J (2009) Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 33(1):133–151. doi:10.1111/j.1574-6976.2008.00145.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ambri, F., Snoek, T., Skjoedt, M.L., Jensen, M.K., Keasling, J.D. (2018). Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast. In: Jensen, M.K., Keasling, J.D. (eds) Synthetic Metabolic Pathways. Methods in Molecular Biology, vol 1671. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7295-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7295-1_17

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7294-4

  • Online ISBN: 978-1-4939-7295-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics