Skip to main content

Human Satellite Cell Isolation and Xenotransplantation

  • Protocol
  • First Online:
Skeletal Muscle Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1668))

Abstract

Satellite cells are mononucleated cells of the skeletal muscle lineage that exist beneath the basal lamina juxtaposed to the sarcolemma of skeletal muscle fibers. It is widely accepted that satellite cells mediate skeletal muscle regeneration. Within the satellite cell pool of adult muscle are skeletal muscle stem cells (MuSCs), also called satellite stem cells, which fulfill criteria of tissue stem cells: They proliferate and their progeny either occupies the adult MuSC niche during self-renewal or differentiates to regenerate mature muscle fibers. Here, we describe robust methods for the isolation of enriched populations of human satellite cells containing MuSCs from fresh human muscle, utilizing mechanical and enzymatic dissociation and purification by fluorescence-activated cell sorting. We also describe a process for xenotransplantation of human satellite cells into mouse muscle by injection into irradiated, immunodeficient, mouse leg muscle with concurrent notexin or bupivacaine muscle injury to increase engraftment efficiency. The engraftment of human MuSCs and the formation of human muscle can then be analyzed by histological and immunofluorescence staining, or subjected to in vivo experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE (2005) Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122:289–301

    Article  CAS  PubMed  Google Scholar 

  2. Kuang S, Kuroda K, Le Grand F, Rudnicki MA (2007) Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell 129:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M (2005) Direct isolation of satellite cells for skeletal muscle regeneration. Science 309:2064–2067

    Article  CAS  PubMed  Google Scholar 

  4. Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM (2008) Self-renewal and expansion of single transplanted muscle stem cells. Nature 456:502–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sherwood RI, Christensen JL, Conboy IM, Conboy MJ, Rando TA, Weissman IL, Wagers AJ (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554

    Article  CAS  PubMed  Google Scholar 

  6. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5:1027–1059

    Article  PubMed  Google Scholar 

  7. Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bareja A, Holt JA, Luo G, Chang C, Lin J, Hinken AC, Freudenberg JM, Kraus WE, Evans WJ, Billin AN (2014) Human and mouse skeletal muscle stem cells: convergent and divergent mechanisms of myogenesis. PLoS One 9:e90398

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boldrin L, Morgan JE (2012) Human satellite cells: identification on human muscle fibres. PLoS Curr 3:RRN1294

    Article  PubMed  PubMed Central  Google Scholar 

  10. Castiglioni A, Hettmer S, Lynes MD, Rao TN, Tchessalova D, Sinha I, Lee BT, Tseng YH, Wagers AJ (2014) Isolation of progenitors that exhibit myogenic/osteogenic bipotency in vitro by fluorescence-activated cell sorting from human fetal muscle. Stem Cell Reports 2:92–106

    Article  CAS  PubMed Central  Google Scholar 

  11. Darabi R, Arpke RW, Irion S, Dimos JT, Grskovic M, Kyba M, Perlingeiro RC (2012) Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell 10:610–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ehrhardt J, Brimah K, Adkin C, Partridge T, Morgan J (2007) Human muscle precursor cells give rise to functional satellite cells in vivo. Neuromuscul Disord 17:631–638

    Article  PubMed  Google Scholar 

  13. Lindstrom M, Thornell LE (2009) New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men. Histochem Cell Biol 132:141–157

    Article  PubMed  Google Scholar 

  14. Marg A, Escobar H, Gloy S, Kufeld M, Zacher J, Spuler A, Birchmeier C, Izsva´k Z, Spuler S (2014) Human satellite cells have regenerative capacity and are genetically manipulable. J Clin Invest 124:4257–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22:1008–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miller RG, Sharma KR, Pavlath GK, Gussoni E, Mynhier M, Lanctot AM, Greco CM, Steinman L, Blau HM (1997) Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 20:469–478

    Article  CAS  PubMed  Google Scholar 

  17. Partridge T (2002) Myoblast transplantation. Neuromuscul Disord 12(Suppl 1):S3–S6

    Article  PubMed  Google Scholar 

  18. Pisani DF, Dechesne CA, Sacconi S, Delplace S, Belmonte N, Cochet O, Clement N, Wdziekonski B, Villageois AP, Butori C, Bagins C, Di Santo JP, Kurzenne JY, Desnuelle C, Dani C (2010) Isolation of a highly myogenic CD34-negative subset of human skeletal muscle cells free of adipogenic potential. Stem Cells 28:753–764

    Article  CAS  PubMed  Google Scholar 

  19. Silva-Barbosa SD, Butler-Browne GS, de Mello W, Riederer I, Di Santo JP, Savino W, Mouly V (2008) Human myoblast engraftment is improved in laminin-enriched microenvironment. Transplantation 85:566–575

    Article  PubMed  Google Scholar 

  20. Skuk D, Paradis M, Goulet M, Chapdelaine P, Rothstein DM, Tremblay JP (2010) Intramuscular transplantation of human postnatal myoblasts generates functional donor-derived satellite cells. Mol Ther 18:1689–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Charville GW, Cheung TH, Yoo B, Santos PJ, Lee GK, Shrager JB, Rando TA (2015) Ex vivo expansion and in vivo self-renewal of human muscle. Stem Cell Reports 5:621–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu X, Wilschut KJ, Kouklis G, Tian H, Hesse R, Garland C, Sbitany H, Hansen S, Seth R, Knott PD, Hoffman WY, Pomerantz JH (2015) Human satellite cell transplantation and regeneration from diverse skeletal muscles. Stem Cell Reports 5:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schubert W, Zimmermann K, Cramer M, Starzinski-Powitz A (1989) Lymphocyte antigen Leu-19 as a molecular marker of regeneration in human skeletal muscle. Proc Natl Acad Sci 86:307–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boldrin L, Neal A, Zammit PS, Muntoni F, Morgan JE (2012) Donor satellite cell engraftment is significantly augmented when the host niche is preserved and endogenous satellite cells are incapacitated. Stem Cells 30:1971–1984

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by CIRM New Faculty Physician Scientist Award RN3-06504 to JHP and the UCSF PROF-PATH program through R25MD006832 from the National Institute on Minority Health and Health Disparities fellowship to SMG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason H. Pomerantz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Garcia, S.M., Tamaki, S., Xu, X., Pomerantz, J.H. (2017). Human Satellite Cell Isolation and Xenotransplantation. In: Ryall, J. (eds) Skeletal Muscle Development. Methods in Molecular Biology, vol 1668. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7283-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7283-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7282-1

  • Online ISBN: 978-1-4939-7283-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics